Пятигорский медико-фармацевтический институт — филиал ФГБОУ ВО ВолгГМУ Минздрава России, г. Пятигорск

БЕЛИКОВСКИЕ ЧТЕНИЯ: материалы V Всероссийской научнопрактической конференции

УДК 615:001.92:37 ББК 52.82 Б 43

> Беликовские чтения: материалы V Всероссийской научнопрактической конференции. — Пятигорск: Рекламноинформационное агентство на Кавминводах, 2017. — 420 с.

> > ISBN 978-5-89314-812-1

В сборник вошли работы, представленные на ежегодной Всероссийской научно-практической конференции «Беликовские чтения», посвященные изучению лекарственной флоры, фармакологическим, технологическим и химическим исследованиям.

Мнение редакционной коллегии может не совпадать с мнением авторов. Статьи напечатаны в авторской редакции.

УДК 615:001.92:37 ББК 52.82

[©] Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ МЗ РФ, 2017

[©] Коллектив авторов, 2017

	Потапова И.В., Кутузов М.А., Золотых М.А. РАЗРАБОТКА ВЭЖХ-МС/МС МЕТОДА КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ИВАБРАДИНА И ЕГО МЕТАБОЛИТА В МОЧЕ КРЫС	264
!	Сигарева С.С., Василенко Ю.К. ИЗМЕНЕНИЕ МЕТАБОЛИЧЕСКИХ ПОКАЗАТЕЛЕЙ У ЗДОРОВЫХ ЖИВОТНЫХ ПРИ ВВЕДЕНИИ ПОРОШКА И СУХОГО ЭКСТРАКТА	
	ПЛОДОВ МОРКОВИ ДИКОЙ И МОРКОВИ ПОСЕВНОЙ	366
	СРЕДИ НОВЫХ ПРОИЗВОДНЫХ 1,2,4-ТРИАЗОЛА	369
	ПРИМЕНЕНИЕ ИММУНОЛОГИЧЕСКОГО АНАЛИЗА В ДИАГНОСТИКЕ ГНОЙНО-СЕПТИЧЕСКИХ ЗАБОЛЕВАНИЙ У ДЕТЕЙ	372
ı	Тимирчева В.В. ОСОБЕННОСТИ КОМПЛЕКСНОГО ЛЕЧЕНИЯ КАНДИДОЗА ПОЛОСТИ РТА С ИСПОЛЬЗОВАНИЕМ АНТИОКСИДАНТНОЙ ТЕРАПИИ	374
•	Торохова В.О., Аколджонова Э.Г. ОСОБЕННОСТИ ВЫБОРА БРЕКЕТОВ И МЕТАЛЛИЧЕСКИХ ДУГ ПРИ ЛЕЧЕНИИ ПАЦИЕНТОВ ДУГОВОЙ АППАРАТУРОЙ	377
(Хитун К.С., Соколова Е.В. ИЗУЧЕНИЕ ЗАВИСИМОСТИ АНТИГЛИКИРУЮЩЕЙ АКТИВНОСТИ ОТ КОНЦЕНТРАЦИИ НОВЫХ ПРОИЗВОДНЫХ 1,2,4-ТРИАЗОЛА, ИНГИБИРУЮЩИХ РЕАКЦИЮ МАЙЯРА IN VITRO	380
	Чижикова Т.В., Мнацаканян А.В. РАСПРОСТРАНЕННОСТЬ И ИНТЕНСИВНОСТЬ КАРИЕСА ЗУБОВ И НЕКАРИОЗНЫХ ПОРАЖЕНИЙ У СТУДЕНТОВ ПМФИ – ФИЛИАЛА ВОЛГГМУ	382
	Швелидзе Д.В. АНАЛИЗ МЕТОДИК ОЦЕНКИ УРОВНЯ АДАПТАЦИОННЫХ РЕСУРСОВ И ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ ОРГАНИЗМА В ЭКСПЕРИМЕНТЕ	387
	Юсупов Х.Р. ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ КОНТРАСТНОГО ВЕЩЕСТВА ПРИ СЛЮНОКАМЕННОЙ БОЛЕЗНИ ПОДНИЖНЕЧЕЛЮСТНОЙ СЛЮННОЙ ЖЕЛЕЗЫ	389

- 4. Thomas M.C. et al. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease // Curr. Drug Targets. 2005. Vol. 6. P. 453–474.
- 5. Turgut F., Bolton W.K. Proteinal New Therapeutic Agents for Diabetic Kidney Disease // American Journal of Kidney Diseases. 2010. Vol 55, №5 (May). P. 928-940.

УДК 615.224.015

РАЗРАБОТКА ВЭЖХ-МС/МС МЕТОДА КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ИВАБРАДИНА И ЕГО МЕТАБОЛИТА В МОЧЕ КРЫС

Потапова И.В., Кутузов М.А., Золотых М.А.

Волгоградский государственный медицинский университет, г. Волгоград

E-mail: ir.potapo2011@ya.ru

Введение. Ивабрадин является субстратом изофермента СҮРЗА4, что создаёт перспективы для его внедрения в качества маркёрного субстрата этой системы метаболизма [2]. Одной из возможных сфер применения данного метода является доклиническое изучение путей метаболизма других лекарственных веществ. Большинство существующих на сегодняшний день методик определения ивабрадина и его метаболита обладают рядом ограничений, преодоление которых возможно с использовании высокоспецифичного хромато-масс-спектрометрического метода.

Целью исследования явилась разработка метода количественного определения ивабрадина и его N-деметилированного метаболита в биологических пробах с использованием высокоэффективной жидкостной хроматографии в комбинации с тандемным масс-спектрометрическим детектором.

Материалы и методы. Для приготовления маточных и стандартных растворов ивабрадина и его N-деметилированного метаболита использовались сухие навески соответствующих стандартов веществ, которые впоследствии растворяли и разводили в смеси ацетонитрил/вода в объёмном соотношении 60/40. В качестве опытных образцов были использованы образцы мочи крыс,

которым перорально вводился препарат «Кораксан®» (МНН: ивабрадин). Пробоподготовка опытных образцов мочи проводилась путём 50-ти кратного разведения последующим центрифугированием в течение 15 мин при 3000 об./мин и отбором 100 мкл надосадочной жидкости для анализа. Хроматографическое разделение компонентов проводилось с использованием ВЭЖХ системы Agilent 1260 с бинарным насосом и термостатируемым автосемплером на колонке Poroshell 120 C18 (4,6 х 50 мм, 2,7 мкм). Для детекции аналитов применена гибридная массспектрометрическая система Sciex QTRAP 5500.

Результаты и их обсуждение. Разработка метода количественного ВЭЖХ-МС/МС определения ивабрадина и его Nдесметилвабрадина включала определения оптимальных параметров хроматографического разделения, а также последующей масс-спектрометрической детекции. В качестве метода ионизации был использован электроспрей (ESI). Детекция ионов проводиположительной полярности [1]. Ионылась режиме «предшественники» ивабрадина соответствовали частицам с m/z 469, ионы-«предшественники» N-десметиливабрадина — m/z 455. Для построения метода мониторинга множественных реакций (MRM) использовались ионные переходы, соответствующие наибольшей интенсивности ионов-«продуктов». Было установлено, что оба вещества в ходе диссоциации в камере соударений дают по два наиболее интенсивных иона-«продукта»: m/z 262 и m/z 177 для ивабрадина; *m/z* 262 и *m/z* 206 для N-десметиливабрадина. При создании количественного MRM-метода с целью повышения специфичности были использованы оба ионных перехода. В ходе оптимизации условий хроматографического разделения был выбран изократический режим элюирования. Мобильная фаза представляла собой смесь ацетонитрил/вода в соотношении 60/40 при скорости потока 0,6 мл/мин. В качестве модификаторов мобильной фазы использовалась 0,1% муравьиная кислота, а также 5мМ ацетат аммония, добавляемые к водной и органическим составляющим мобильной фазы. При этих условиях среднее время удерживания ивабрадина составило 0,9 мин., время удерживания N-десметиливабрадина – 1,1 мин., что позволяло сократить суммарное время анализа каждой пробы до 1,5 минут.

Выводы. Таким образом, в ходе проведённого исследования были установлены оптимальные условия высокочувствительного и селективного количественного ВЭЖХ-МС/МС определения ивабрадина и его N-деметилированного метаболита.

Библиографический список

- Klippert P., Jeanniot J.P. et al Determination of ivabradine and its N-demethylated metabolite in human plasma and urine, and in rat and dog plasma by a validated high-performance liquid chromatographic method with fluorescence detection // J. Chromatogr. B. Biomed. Sci. Appl. 1998. Vol. 20 (719). P. 125-133.
- 2. Петров В.И., Магницкая О.В., Толкачёв Б.Е. и др. Определение метаболического отношения N-деметиливабрадин/ивабрадин для оценки активности СҮРЗА4 // Вестник ВолгГМУ. 2013. № 3 (47). С. 30-32.
- 3. *Петров В.И.*, Магницкая О.В., Толкачёв Б.Е. и др. Сравнительная оценка методов определения метаболического коэффициента N-деметиливабрадин/ивабрадин в плазме и моче // Вестник ВолгГМУ. 2013. № 3 (47). С. 33-34.

УДК615.451.16.012/.014.015.4

ИЗМЕНЕНИЕ МЕТАБОЛИЧЕСКИХ ПОКАЗАТЕЛЕЙ У ЗДОРОВЫХ ЖИВОТНЫХ ПРИ ВВЕДЕНИИ ПОРОШКА И СУХОГО ЭКСТРАКТА ПЛОДОВ МОРКОВИ ДИКОЙ И МОРКОВИ ПОСЕВНОЙ

Сигарева С.С., Василенко Ю.К.

Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России, г. Пятигорск E-mail: svgritchina@yandex.ru

Введение. Многочисленные исследования свидетельствуют о том, что различные вещества флавоноидной структуры, выделенные из растений в чистом виде или входящие в состав суммарных препаратов, обладают широким спектром фармакологической активности как у здоровых животных, так и при различных типах экспериментальных патологий [1].