Оценочные средства для проведения аттестации по дисциплине «Биокинетика» для обучающихся по образовательной программе направления подготовки 06.03.01 Биология, профиль Биохимия, (уровень бакалавриата), форма обучения очная на 2022-2023 учебный год

1.1. Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, решение ситуационных задач, оценка освоения практических навыков (умений), контрольная работа, написание и защита реферата, собеседование по контрольным вопросам, подготовка доклада.

1.1.1. Примеры тестовых заданий

Проверяемые компетенции: ОК-7, ОПК-4, ОПК-5, ПК-1, ПК-2, ДПБК-3

- 1. Какое вещество называется субстратом?
- А. Вещество, претерпевающее химические превращения под действием фермента
- Б. Вещество, которое образуется в результате реакции
- В. Вещество, которое ингибирует фермент
- Г. Является белковой частью фермента
- 2. В состоянии термодинамического равновесия константа Михаэлиса:
- А. Больше константы диссоциации
- Б. Равна константе диссоциации
- В. Меньше константы диссоциации
- Г. Не связана с константой диссоциации
- 3. Влияет ли дефицит кофермента на концентрацию фермент-субстратного комплекса при неупорядоченном механизме реакции?
- А. Обращает
- Б. Повышает
- В. Не влияет
- Г. Понижает
- 4. Изоферменты:
- А. Имеют одинаковую подвижность в электрическом поле
- Б. Это продукты экспрессии одного гена
- В. Различные формы фермента, катализирующие одну реакцию
- Г. Ферменты, катализирующие различные реакции

- 5. Ферменты увеличивают скорость реакции, так как:
- А. Уменьшают скорость обратной реакции
- Б. Уменьшают энергию активации
- В. Изменяют состояние равновесия реакции
- Г. Избирательно увеличивают скорость прямой реакции, но не увеличивают скорость обратной реакции
- 6. Реакции соединения двух молекул, сопровождающиеся разрывом пирофосфатной связи АТФ, катализируют:
- А. Трансферазы
- Б. Лиазы
- В. Оксидоредуктазы
- Г. Лигазы
- 7. Липидная часть биологической мембраны находится в следующем фазовом состоянии:
- А. Жидкокристаллическом
- Б. Жидком аморфном
- В. Твердом кристаллическом
- Г. Твердом аморфном
- 8. Типы клеточных рецепторов:
- А. Межклеточные, плазматические, внутриклеточные
- Б. Внутриклеточные и цитоплазматические
- В. Микросомальные, внутриклеточные, поверхностные
- Г. Внутриклеточные и мембранные
- 9. Катаболизм ксенобиотиков включает (выбрать несколько вариантов):
- А. Преципитацию
- Б. Окисление
- В. Пермеабилизацию
- Г. Конъюгацию
- 10. Транспортные АТФ-азы переносят:
- A. Na, K, Mg, Cl
- Б. Na, K, H, Cl
- B. Na, K, Ca, Cl
- Γ. Na, K, H, Ca
- 1.1.2. Пример(ы) ситуационной (ых) задач(и)

Проверяемые компетенции: УК-1, УК-2.

- 1. Стационарная кинетика процесса ферментативной реакции, вне зависимости от числа и природы интермедиантов, описывается:
- а) экспоненциальной кривой
- б) теоремой Нейтвиста
- в) методом графов
- г) уравнением Микаэлиса
- 1.1.3. Примеры заданий по оценке освоения практических навыков

Проверяемые компетенции: УК-3, УК-4.

- 1.Рассчитайте средний диаметр частиц силикагеля, если его удельная поверхность равна $8.3 \cdot 10~3~\text{м2}$ /кг, а плотность $\rho = 2200~\text{кг/м3}$.
- 2. Определите количество клеток при росте клеточной культуры в хемостате с помощью дифференциального уравнения Мальтуса при начальном количестве клеток 2534, удельной скорости роста клеточной культуры 2004, через 4 часа роста.
- 1.1.4. Пример варианта контрольной работы

Проверяемые компетенции: УК-3, УК-4.

- 1. Кинетический эксперимент, его параметры. Кинетические кривые.
- 1.1.5. Примеры тем рефератов
- 1. Математическая модель клетки. Модель эритроцита: гликолиз;
- 2. Факторы влияющие на связывание рецептор –лиганд;
- 3. Математические модели биокинетики. Элементы математической статистики.
- 1.1.6. Примеры контрольных вопросов для собеседования

Проверяемые компетенции: УК-3, УК-4.

- 1. Особенностями кинетики биологических систем являются:
- а) в биологических системах в качестве переменных выступают не только концентрации, но и любые другие величины
- б) переменные изменяются не только во времени, но и в пространстве
- в) биологические системы пространственно неоднородны
- г) все вышеперечисленное верно
- 2. Живая система это система:
- а) открытая
- б) закрытая
- в) изолированная
- г) смешанная

- 3. К фазам клеточного цикла относят:
- а) индукционный период, фазу экспоненциального роста, фазу линейного роста, фазу отмирания культуры
- б) фазу линейного роста, фазу замедления роста, стационарную фазу, фазу отмирания культуры
- в) индукционный период, фазу экспоненциального роста, фазу линейного роста, фазу замедления роста, стационарную фазу, фазу отмирания культуры
- г) индукционный период, фазу экспоненциального роста, фазу замедления роста, стационарную фазу, фазу отмирания культуры

1.1.7. Примеры тем докладов

Проверяемые компетенции: УК-3, УК-4.

- 1. Мембранный транспорт. Мембраны клетки. Структура мембран;
- 2. Механизмы транспорта: пассивная диффузия, активный транспорт, транслокация групп;
- 3. Модель мембранного транспорта и осмотической модели.

1.2. Оценочные средства для проведения промежуточной аттестации по дисциплине

Промежуточная аттестация проводится в форме экзамена.

Промежуточная аттестация включает следующие типы заданий: тестирование, решение ситуационной задачи, собеседование.

1.2.3. Перечень вопросов для собеседования

No॒	Вопросы для промежуточной аттестации	Проверяемые компетенций
1.	Предмет изучения биокинетики. Хмическая кинетика как основа биокинетики. История развития химической кинетики. Становление биокинетики в Волгоградской области.	УК-1,УК-2, УК-3
2.	Кинетический эксперимент, его параметры. Кинетические кривые.	
3.	Ферментативный катализ. Фермент-субстратный комплекс. Механизм Михаэлиса-Ментен. Метод графов при анализе кинетических схем.	УК-1,УК-2, УК-3
4.	Константы скорости и порядка реакции.	УК-1,УК-2, УК-3
5.	Влияние факторов на скорость ферментативной реакции.	УК-1,УК-2, УК-3
6.	Ингибирование активности фермента.	УК-1,УК-2, УК-3
7.	Инактивация ферментов	УК-1,УК-2, УК-3
8.	Многосубстратные реакции.	УК-1,УК-2, УК-3

9.	Ошибки в кинетическом эксперименте.	УК-1,УК-2, УК-3
10.	Молекулярная рецепция. Рецепторы и лиганды. Агонисты и антагонисты.	УК-1,УК-2, УК-3
11.	Вторичные посредники.	УК-1,УК-2, УК-3
12.	Принцип структурной комплементарности. Специфическое и неспецифическое связывание.	УК-1,УК-2, УК-3
13.	Влияние факторов на связывание рецепторами.	УК-1,УК-2, УК-3
14.	Мембранный транспорт. Мембраны клетки. Структура мембран.	УК-1,УК-2, УК-3
15.	Механизмы транспорта: пассивная диффузия, активный транспорт, транслокация групп.	УК-1,УК-2, УК-3
16.	Кинетика транспорта ионов: уравнения Нернста, мембранные потенциалы.	УК-1,УК-2, УК-3
17.	Математические модели биокинетики. Элементы математической статистики.	УК-1,УК-2, УК-3
18.	Математическая модель клетки. Модель эритроцита: гликолиз.	УК-1,УК-2, УК-3
19.	Модель пентозного цикла.	УК-1,УК-2, УК-3
20.	Модель аденозин нуклеотидного метаболизма.	УК-1,УК-2, УК-3
21.	Модель мембранного транспорта и осмотической модели.	УК-1,УК-2, УК-3

1.2.4. Пример экзаменационного билета

федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра: фундаментальной медицины и биологии

Дисциплина: Биокинетика

Направление подготовки 06.03.01 Биология, профиль Биохимия

Учебный год: 2022-2023

Экзаменационный билет № 7

Экзаменационные вопросы:

- 1. Опишите различные механизмы внутриклеточного и межклеточного транспорта;
- 2. Интегральная форма уравнения Михаэлиса-Ментена

Экзаменационные задачи:

1. Начальная скорость выделения кислорода под действием фермента на субстрат измерена для ряда концентраций субстрата S.

[S], M	0,05	0,017	0,010	0,005	0,002
$W_{0,MM^3X\ MИH^{-1}}$	16,6	12,4	10,1	6,6	3,3

Определите константу Михаэлиса и поясните ее смысл.

2. Начальная скорость окисления сукцината натрия в фумарат натрия под действием фермента сукциноксидазы измерена для пяти концентраций

[S] ₀ , моль/л ⁻¹	0,01	0,002	0,01	0,0005	0,00033
W _{0,} моль/л-1 с-1	1,17	0,99	0,79	0,62	0,50
	10-6	10-6	10-6	10-6	10-6

Определите константу Михаэлиса и поясните ее смысл.

М.П.	Завелующий кафеллой	Стрыгин А.В
IVI.II.	Заведующий кафедрой	СТОЫГИН А.Б

Обсуждено на заседании кафедры фундаментальной медицины и биологии, протокол № 12 от «27» мая 2022 г.

BH

Заведующий кафедрой

А.В. Стрыгин