Оценочные средства для проведения аттестации по дисциплине «Энзимология» для обучающихся по образовательной программе направления подготовки 06.03.01 Биология, профиль Биохимия, (уровень бакалавриата), форма обучения очная на 2022-2023 учебный год

1.1. Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, оценка освоения практических навыков (умений), контрольная работа, написание и защита реферата, собеседование по контрольным вопросам, решение ситуационных задач.

1.1.1. Примеры тестовых заданий

Проверяемые компетенции: ОПК-5, ДПБК-3

1 Какие связи не участвуют в формировании структуры белка?

- А) ковалентные пептидные связи;
- В) фосфодиэфирные связи;
- С) водородные связи;
- D) гидрофобные взаимодействия между боковыми группами.

2 Ферменты из класса гидролаз катализируют реакции:

- А) окислительно-восстановительные;
- В) межмолекулярного переноса групп атомов и радикалов 23;
- С) расщепления связей при участии молекулы воды;
- D) присоединение групп по двойным связям.

3 Отличия ферментов от неорганических катализаторов:

- А) термостабильность;
- В) высокая субстратная специфичность;
- С) расходуются в результате катализа;
- D) зависимость от активаторов и ингибиторов.

4 АТФ-синтаза:

- А) активируется электронами;
- В) относится к группе мономерных белков;
- С) взаимодействует с О2;
- D) олигомерный белок внутренней мембраны митохондрий.

5 Ферменты из класса лиаз катализируют реакции:

- А) окислительно-восстановительные;
- В) межмолекулярного переноса групп атомов и радикалов;
- С) расщепления связей при участии молекулы воды;
- D) присоединение групп по двойным связям.

6 Небелковая часть в структуре сложного фермента называется:

- А) простетическая группа;
- В) апофермент;
- С) кофермент;
- D) кофактор.

7 К ферментам антиоксидантного действия относят:

- А) каталаза;
- В) монооксидаза;
- С) глутатионпероксидаза;
- D)супероксиддисмутаза.

- 8 Фермент, который сшивает разрывы в ДНК, во время синтеза ДНК или ее репарации называется:
 - A)ДНК N гликозидаза;
 - В)ДНК-лигаза;
 - С)ДНК-эндонуклеаза;
 - D)инсертаза.
- 9 Изоферменты это множественные формы ферментов, которые:
 - А) катализируют разные реакции;
 - В) катализируют одну и ту же реакцию;
 - С) не различаются по активности;
 - D) не различаются по физико-химическим свойствам.
- 10 Скорость реакций с участием простых ферментов зависит от:
 - А) концентрации субстрата;
 - В) концентрации продукта;
 - С) концентрации фермента;
 - D) молекулярной массы фермента.

1.1.2. Пример варианта контрольной работы

Проверяемые компетенции: ОПК-5, ДПБК-3

Вариант 1.

- 1. Факторы, влияющие на скорость ферментативных реакций: температура, рН среды, концентрация фермента и субстрата.
- 2. Основы кинетики ферментативных реакций. Единицы измерения активности ферментов. Уравнение Михаэлиса-Ментен. Биологическое значение константы Михаэлиса.
- 3. Кофакторы ионы металлов. Примеры ферментов и их функций.

1.1.3. Примеры тем рефератов

Проверяемые компетенции: ОПК-5, ПК-8, ДПБК-3

- 1. Принципы использования ферментов в качестве клинико-лабораторных биомаркёров. Диагностическое значение изоферментов.
- 2. Ограничения определения активности ферментов для диагностики заболеваний.
- 3. Современная международная номенклатура EC enzyme code. Организации, занимающиеся вопросами классификации и номенклатуры IUBMB IUPAC.

1.1.4. Примеры контрольных вопросов для собеседования

Проверяемые компетенции: ОПК-5, ДПБК-3

- 1. Регуляция активности ферментов путём белок-белковых взаимодействий. Аденилатциклазный механизм передачи гормонального сигнала. Роль цАМФ.
- 2. Регуляция активности ферментов путём ковалентной модификации. Фосфорилирование и дефосфорилирование.
- 3. Частичный протеолиз: биологическое значение и примеры.
- 4. Медицинская энзимология: определение и основные разделы.
- 5. Классификация энзимопатий. Схемы патогенеза первичных энзимопатий.

1.1.5. Примеры заданий по оценке освоения практических навыков

Проверяемые компетенции: ОПК-5, ОПК-6, ПК-8, ДПБК-3

Задание 1. В базе данных NCBI Structure, вводя в окно поиска название фермента на английском языке, найти структуры ферментов с номенклатурным номером 1.1.1.1 и 3.4.4.5. Описать структуру выбранных ферментов.

Задание 2. В базе данных ферментов BRENDA в окно поиска ввести номенклатурные номера ферментов, выписать названия ферментов, имеющих данные номера:

- a) 1.1.1.2
- б) 2.3.2.2
- в) 2.7.2.1
- r) 3.4.3.1
- д) 3.3.4.5

1.2. Оценочные средства для проведения промежуточной аттестации по дисциплине

Промежуточная аттестация по дисциплине проводится в форме экзамена. Промежуточная аттестация включает следующие типы заданий: тестирование, собеседование по контрольным вопросам, решение ситуационной задачи.

1.2.1. Примеры тестовых заданий

Проверяемые компетенции: ОПК-5, ДПБК-3

- 1 Какие связи не участвуют в формировании структуры белка?
 - А) ковалентные пептидные связи;
 - В) фосфодиэфирные связи;
 - С) водородные связи;

- D) гидрофобные взаимодействия между боковыми группами.
- 2 Ферменты из класса гидролаз катализируют реакции:
 - А) окислительно-восстановительные;
 - В) межмолекулярного переноса групп атомов и радикалов 23;
 - С) расщепления связей при участии молекулы воды;
 - D) присоединение групп по двойным связям.
- 3 Отличия ферментов от неорганических катализаторов:
 - А) термостабильность;
 - В) высокая субстратная специфичность;
 - С) расходуются в результате катализа;
 - D) зависимость от активаторов и ингибиторов.
- 4 АТФ-синтаза:
 - А) активируется электронами;
 - В) относится к группе мономерных белков;
 - С) взаимодействует с О2;
 - D) олигомерный белок внутренней мембраны митохондрий.
- 5 Ферменты из класса лиаз катализируют реакции:
 - А) окислительно-восстановительные;
 - В) межмолекулярного переноса групп атомов и радикалов;
 - С) расщепления связей при участии молекулы воды;
 - D) присоединение групп по двойным связям.
- 6 Небелковая часть в структуре сложного фермента называется:
 - А) простетическая группа;
 - В) апофермент;
 - С) кофермент;
 - D) кофактор.
- 7 К ферментам антиоксидантного действия относят:
 - А) каталаза;
 - В) монооксидаза;
 - С) глутатионпероксидаза;
 - D)супероксиддисмутаза.
- 8 Фермент, который сшивает разрывы в ДНК, во время синтеза ДНК или ее репарации называется:
 - A)ДНК N гликозидаза;
 - В)ДНК-лигаза;
 - С)ДНК-эндонуклеаза;
 - D)инсертаза.
- 9 Изоферменты это множественные формы ферментов, которые:
 - А) катализируют разные реакции;
 - В) катализируют одну и ту же реакцию;
 - С) не различаются по активности;
 - D) не различаются по физико-химическим свойствам.
- 10 Скорость реакций с участием простых ферментов зависит от:
 - А) концентрации субстрата;
 - В) концентрации продукта;
 - С) концентрации фермента;
 - D) молекулярной массы фермента.

2.2.2. Пример ситуационной задачи

Проверяемые компетенции: ОПК-5, ОПК-6, ПК-8, ДПБК-3

Вам необходимо зафиксировать изменение оптической плотности раствора для определения активности фермента спектрофотометрическим методом. Объясните принцип выбора длины волны.

2.2.3. Перечень контрольных вопросов для собеседования

№	Вопросы для промежуточной аттестации	Проверяемые компетенции
1	Общие принципы структурной организации белков-	ОПК-5, ДПБК-3
	ферментов, первичная, вторичная, третичная, четвертичная структуры.	
2	Значение доменной организации для проявления	ОПК-5, ДПБК-3
	ферментативной активности.	7 / 1
3	Особенности ферментативной активности	ОПК-5, ДПБК-3
	олигомерных белков. Положительная и отрицательная кооперативность у ферментов.	
4	Взаимодействие активного центра с лигандом -	ОПК-5, ДПБК-3
	необходимое условие проявления и регуляции	
	ферментативной активности. Принципы и	
	механизмы взаимодействия «белок-лиганд».	
5	Физико-химические свойства белковых молекул и	ОПК-5, ДПБК-3
	взаимосвязь между конформационными	
	изменениями и проявлением ферментативной	
6	активности. Предмет и основные понятия энзимологии.	ОПК-5, ДПБК-3
U	Определение фермента, ферментативного катализа	отис э, диыс э
	и основных терминов энзимологии.	
7	Номенклатура ферментов. Классы и подклассы	ОПК-5, ДПБК-3
	ферментов. Систематические и тривиальные	
	названия.	
8	Способы классификации ферментов. Варианты	ОПК-5, ДПБК-3
	классификации ферментов по функциям, структуре,	
	кофакторам (коферментам) и другим параметрам.	
9	Понятие о семействах и суперсемействах	ОПК-5, ДПБК-3
	ферментов. Примеры семейств и суперсемейств. Взаимосвязь доменной организации с	
	Взаимосвязь доменной организации с классификацией по ферментам.	
10	Структурный и функциональный полиморфизм	ОПК-5, ДПБК-3
	ферментов. Изоферменты и изофункциональные	отись, дивк з
	ферменты.	
11	Общие принципы каталитического действия	ОПК-5, ДПБК-3
	ферментов. Понятие о каталитическом активном	
	центре.	

12	Строение каталитического активного центра. Принцип комплиментарности при взаимодействии каталитического центра с субстратом.	ОПК-5, ДПБК-3
13	Гипотезы полного («ключ-замок») и индуцированного («ручка-перчатка») соответствия.	
14	Стадии ферментативного катализа. Образование фермент-субстратного комплекса.	ОПК-5, ДПБК-3
15	Понятие о кофакторах и коферментах. Классификация коферментов. Свободные и прочно связанные коферменты.	ОПК-5, ДПБК-3
16	Специфичность действия ферментов. Классификация видов специфичности. Субстратная и реакционная специфичность.	ОПК-5, ДПБК-3
17	Субстратная специфичность: абсолютная (строгая) и относительная (групповая, широкая).	
18	Стереоспецифичность. Особенность субстратной и реакционной специфичности.	ОПК-5, ДПБК-3
19	Образование предпочтительного переходного комплекса и механизмы его селекции и стабилизации.	ОПК-5, ДПБК-3
20	Кислотно-основной ферментативный катализ (механизмы, вовлеченные компоненты активного центра).	ОПК-5, ДПБК-3
21	Ковалентный ферментативный катализ (механизмы, вовлеченные компоненты активного центра).	ОПК-5, ДПБК-3
22	Металлозависимый ферментативный катализ (механизмы, вовлеченные компоненты активного центра, металлоферменты и металло-активируемые ферменты).	ОПК-5, ДПБК-3
23	Ферментативный катализ, основанный на принципах сближения и ориентации.	ОПК-5, ДПБК-3
24	Применимость принципов химической термодинамики к ферментативному катализу: энтропия, энергия Гиббса, энергия активации. Уравнение Аррениуса и уравнение Гиббса-Гельмгольца.	ОПК-5, ДПБК-3
25	Связь образования промежуточного комплекса с изменением энергии активации ферментативной реакции.	ОПК-5, ДПБК-3
26	Равновесие ферментативной реакции и ее отдельных стадий. Константа равновесия	ОПК-5, ДПБК-3
27	Основные закономерности химической кинетики в приложении к ферментативным реакциям. Порядок реакции.	ОПК-5, ДПБК-3

20	T0 1 V	
28	Константа скорости реакции: физический смысл, экспериментальное определение, методы расчета.	
29	Кинетика ферментативных реакций: общие принципы, терминология. Кинетика Михаэлиса-	ОПК-5, ДПБК-3
	Ментен.	
30	Физический смысл и методы экспериментального	ОПК-5, ДПБК-3
	определения константы Михаэлиса. Понятие о кажущейся константе Михаэлиса.	
31	Кинетика многосубстратных ферментативных	ОПК-5, ДПБК-3
	реакций при независимом и последовательном	
	присоединении субстратов и при реакции по «пинг-	
20	понг»-механизму.	
32	Факторы, влияющие на скорость ферментативных	ОПК-5, ДПБК-3
33	реакций <i>in vivo</i> и <i>in vitro</i> .	
33	Регуляция скорости ферментативных реакций физическими факторами (температура, РН-среды).	
34	Регуляция скорости ферментативных реакций	ОПК-5, ДПБК-3
	концентрациями субстрата, продукта или	отис э, дивис э
	фермента	
35	Регуляция скорости ферментативных реакций	
	доступностью кофактора или кофермента	
36	Неаллостерические ингибиторы ферментов.	ОПК-5, ДПБК-3
	Природа обратимого и необратимого	
	ингибирования.	
37	Необратимые ингибиторы: принципы, механизмы,	ОПК-5, ДПБК-3
	классификация ингибиторов. Суицидальное	
20	ингибирование.	
38	Виды обратимого ингибирования: конкурентное,	ОПК-5, ДПБК-3
39	неконкурентное, бесконкурентное, смешанное. Способы установления типа ингибирования.	ОПК-5, ДПБК-3
33	Численные и графические методы расчета	Опк-э, дивк-э
	константы ингибирования.	
40	Аллостерическая регуляция: общие принципы,	ОПК-5, ДПБК-3
	аллостерический активный центр.	,,,,,==================================
41	Аллостерическое ингибирование, активация и	
	модификация специфичности.	
42	Особенности аллостерической регуляции у	ОПК-5, ДПБК-3
	мономерных, мультидоменных и олигомерных	
12	ферментов.	
43	Изменение активности ферментов на границе фаз и	ОПК-5, ДПБК-3
1 1	при присоединении к мембранам.	
44	Регуляция скорости ферментативных реакций	ОПК-5, ДПБК-3
	ассоциацией и диссоциацией ферментных комплексов (белок-белковые взаимодействия).	
	комплексов (ослок-ослковые взаимодействия).	

45	Физиологические белковые ингибиторы ферментов	ОПК-5, ДПБК-3
45	1 1 1	опк-э, дпык-э
16	и их роль в живой природе.	
46	Регуляция скорости ферментативных реакций путем	ОПК-5, ДПБК-3
47	ковалентной модификации.	
47	Регуляция скорости ферментативных реакций путем	ОПК-5, ДПБК-3
10	частичного протеолиза.	
48	Биологическое значение множественных	ОПК-5, ДПБК-3
	механизмов регуляции ферментативной активности.	
49	Многофункциональные ферментативные	ОПК-5, ДПБК-3
	комплексы как пример сложноустроенных	
	молекулярных машин с возможностью точной	
	регулировки.	
50	Многоферментные дегидрогеназные комплексы.	ОПК-5, ДПБК-3
51	АТФ-синтетазы и АТФазы.	ОПК-5, ДПБК-3
52.	Система биосинтеза и деградации белков как	ОПК-5, ДПБК-3
	согласованный ансамбль полиферментативных	, , ,
	молекулярных машин.	
53.	Каталитический механизм и модуляция функции	ОПК-5, ДПБК-3
	транскрипционных ферментных комплексов про- и	<i>/</i> / 1
	эукариот.	
54.	Сплайсосома - рибонуклепротеидный комплекс со	ОПК-5, ДПБК-3
	специфической каталитической активностью.	,
55.	Согласованное взаимодействие сложноустроенных	ОПК-5, ДПБК-3
	ферментативных комплексов и рибозимов в ходе	5111t 5, A11DIC 5
	трансляции.	
56.	Многофункциональные молекулярные машины,	ОПК-5, ДПБК-3
50.	модифицирующие белковые молекулы, на примере	отк-э, диик-э
57	шаперонов и протеасом.	
57.	Особенности энзимодиагностики и энзимотерапии	
	применяемых в Волгоградской области.	

2.2.4. Пример экзаменационного билета

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра фундаментальной медицины и биологии

Фонд оценочных средств образовательной программы по направлению подготовки «Биология», профиль Биохимия

Дисциплина: Энзимология

Направление подготовки: Биология, профиль Биохимия

Факультет: Медико-биологический

Учебный год: 2022-2023

Экзаменационные вопросы:

- 1. Физический смысл и методы экспериментального определения константы Михаэлиса. Понятие о кажущейся константе Михаэлиса.
- 2. Особенности аллостерической регуляции у мономерных, мультидоменных и олигомерных ферментов
- 3. Регуляция скорости ферментативных реакций путем ковалентной модификации.

Экзаменационная задача:

Вам	необходимо	зафиксировать	изменение	оптической	плотности	раствора	для	
опред	целения	активности ф	рермента	спектрофото	метрическим	мето,	дом.	
Объясните принцип выбора длины волны.								

М.П. Заведующий кафедрой ______ А.В. Стрыгин

B11

Обсуждено на заседании кафедры фундаментальной медицины и биологии, протокол № 12 от «27» мая 2022 г.

Заведующий кафедрой

А.В. Стрыгин