ТЕМАТИЧЕСКИЙ ПЛАН

занятий лекционного типа по дисциплине «Органическая химия»

для обучающихся по образовательной программе специалитета по специальности 33.05.01 Фармация, направленность (профиль) Фармация

форма обучения очная на 2023- 2024 учебный год

Nº	На 2023- 2024 учеоный год Наименование лекции	Часы (акад.)
	1 семестр	
1	Органическая химия как базовая дисциплина в системе фармацевтического образования ¹ . Теория химического строения А.М.Бутлерова Пространственное строение органических соединений. Основные принципы пространственной организации органических молекул и стереоспецифичность биологическиактивных веществ. ²	2
2	Химическая связь и взаимное влияние атомов в молекулах органических соединений ¹ . Индуктивный и мезомерный эффекты. Энергия сопряжения. Теория резонанса как качественный способ описания делокализации электронной плотности. Кислотные и основные свойства органических соединений. Теории Бренстеда и Льюиса. ²	2
3	Насыщенные углеводороды. Алканы, циклоалканы ¹ . Реакционная способность алифатических углеводородов. Реакции радикального замещения, механизм. Особенности строения и химических свойств ² .	2
4	Ненасыщенные углеводороды. Алкены, алкины, алкадиены; особенности строения ¹ . Реакционная способность алифатических углеводородов.Реакции электрофильного и нуклеофильного присоединения, механизм. Идентификация ненасыщенных соединений ²	2
5	Арены; моноядерные соединения ¹ . Особенности строения. Реакционная способность ароматических углеводородов. Реакции электрофильного замещения, механизм. Влияние электронодонорных и электроноакцепторных заместителей на направление и скорость реакции электрофильного замещения. Реакции, протекающие с потерей ароматичности. ²	2
6	Полиядерные ароматические соединения ¹ . Конденсированные арены; строение, реакционная способность. Антрацен, фенантрен. Восстановление, окисление. Высшие конденсированные арены. 3,4-Бензопирен. Канцерогенность бензопиренов. ²	2
7	Галогенопроизводные углеводородов ¹ . Характеристика связей углерод-галоген. Реакционная способность галогенуглеводородов. Конкуренция реакции нуклеофильного замещения и элиминирования. Лекция – дискуссия ² .	2
8	Гидроксипроизводные углеводородов; спирты, фенолы. Реакционная способность гидроксипроизводных и их тиоаналогов. Кислотно-основные свойства. Реакции нуклеофильного замещения; Реакции отщепления (элиминирования) ² .	2
9	Азотсодержащие производные углеводородов ¹ . Реакционная способность аминов. Нуклеофильные и основные свойства. Использование реакций солеобразования при создании водорастворимых лекарственных форм и в анализе лекарственных средств. ²	2
10	Диазо- и азосоединения. 1 Строение. Реакционная способность диазосоединений. Азосочетание как реакция электрофильного замещения. Диазо- и азосоставляющие. Использование реакции азосочетания для идентификации фенолов и ароматических аминов, их индикаторные свойства. Азокрасители. Основные положения электронной теории цветности. 2	2
11	Реакционная способность альдегидов и кетонов. Реакции нуклеофильного присоединения, присоединения-отщепления. 2	2
12	Реакционная способность альдегидов и кетонов. Реакции окисления, восстановления, полимеризации и конденсации. 2	2

13	Реакционная способность карбоновых кислот. Строение карбоксильной группы и карбоксилат-иона. Кислотные свойства. Реакционная способность карбоновых кислот. Функциональные производные карбоновых кислот. 2	2
14	Гетерофункциональность как причина появления специфических свойств. Гидроксикислоты алифатического и ароматического ряда. ²	2
15	Гетерофункциональные соединения. Оксокислоты, реакционная способность. Химические свойства как гетерофункциональных соединений. Специфические свойства. 2	2
16	Гетерофункциональные соединения. Аминокислоты. Строение, биполярная структура. Реакционная способность, специфические свойства. 2	2
17	Пептиды. Белки. Полный синтез пептидов. Строение пептидной группы. Первичная структура пептидов и белков. Частичный и полный гидролиз. Методы установления структуры пептидов. Понятие о сложных белках. 2	2
18	Углеводы. 1 Стереоизомерия и таутомерия моносахаридов, их реакционная способность. Производные моносахаридов. 2	2
	2 семестр	
19	Олиго- и полисахариды. Принцип строения. Восстанавливающие и невосстанавливающие дисахариды. Гомо- и гетерополисахариды. Биополимеры гетерополисахаридной природы. Понятие о смешанных биополимерах. ²	2
20	Пятичленные гетероциклы с одним и двумя гетероатомами ¹ . Ароматические представители. Кислотно-основные свойства. Реакции электрофильного замещения. Биологически активные соединения. ²	2
21	Шестичленные гетероциклы с одним и двумя гетероатомами. Ароматические представители. Кислотно-основные свойства. Реакции электрофильного и нуклеофильного замещения. Биологически активные соединения. ²	2
22	Конденсированные гетероциклы. Ароматические представители. Таутомерия. Кислотно-основные свойства. Качественные реакции. Биологическая значимость пуриновых производных 2	2
23	Алкалоиды. 1 Химическая классификация. Основные свойства; образование солей. Биологическая активность наиболее важных представителей различных классов алкалоидов. 2	2
24	Нуклеиновые кислоты. ¹ Нуклеозиды, нуклеотиды. Коферменты. Первичная и вторичная структура нуклеиновых кислот. ²	2
25	Неомыляемые липиды. ¹ Терпены и терпеноиды. Изопреновое правило. Классификация. Биологическая активность наиболее важных представителей различных классов терпенов, применение в медицине и фармации. ²	2
26	Стероиды. Группы стероидов. Строение, стероизомерия: <i>цис-транс-</i> сочленение циклогексановых колец. Родоначальные углеводороды стероидов и их производные. Биологическая значимость стероидов. Использование в медицине и фармации. ²	2
27	Витамины. ¹ Классификация витаминов. Влияние на жизнедеятельность организма. ²	2
28	Обзорная лекция. Методы исследования строения органических соединений. Лекция – дискуссия. Методы выделения и очистки органических соединений. Современные физико-химические методы установления строения органических молекул. 2	2
	Итого	56

^{1 –} тема лекции

Обсуждено на заседании кафедры химии, протокол №10 от «26» мая $\,$ 2023 г.

Зав. кафедрой химии, профессор

/Брель А.К./

² – сущностное содержание лекции