Assessment tools for certification in the discipline "Biochemistry" for students of the educational program Specialist degree in the specialty of training 31.05.01 General medicine, direction (profile) General medicine, form of study full - time for the 2023-2024 academic year

N⁰	EXAMINATION QUESTIONS IN BIOCHEMISTRY	verifiable general
		professional competencies
1	The subject and tasks of biological chemistry. Biochemistry	GPC-5.1.1, GPC-5.2.1,
	as a molecular level of the structural organization studying,	GPC-5.3.1, GPC-10.1.2,
	anabolism and catabolism of living matter. The importance	GPC-10.2.1, GPC-10.2.2.
	of biochemistry in the doctor's training.	
2	Standard amino acids, their structure and properties. Peptides.	GPC-5.1.1, GPC-5.2.1,
	The biological role of amino acids and peptides.	GPC-5.3.1, GPC-10.1.2,
-		GPC-10.2.1, GPC-10.2.2.
3	The primary structure of proteins. The peptide bond, its	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	characteristics. The dependence of the biological properties	GPC-10.2.1, GPC-10.2.2.
	of proteins on the primary structure. Violation of the	
	primary structure and function of hemoglobin A (on	
	example of hemoglobin S).	
4	The secondary structure of proteins. Types of the secondary	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	structures. Bonds that stabilize the secondary structure.	GPC-10.2.1, GPC-10.2.2.
	The active site of proteins and its specific interaction with	
	ligand as a basis of biological function of proteins. The	
	protein-ligand complementary interaction. Convertibility of	
	linkage.	
5	Tertiary structure of proteins. Types of chemical bonds	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	involved in the formation of the tertiary structure.	GPC-10.2.1, GPC-10.2.2.
	Supersecondary structures. Domain structure and its role in	
	the functioning of proteins. The role of chaperones (heat	
	shock proteins) in the formation of the tertiary structure of	
_	proteins in vivo.	
6	The active center of proteins and its specific interaction	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	with the ligand, as the basis of the biological function of	GPC-10.2.1, GPC-10.2.2.
	proteins. Conformational lability of proteins.	
	Complementarity of the interaction of proteins with ligands.	
	The reversibility of binding.	
7	Quaternary structure of proteins. Features of the structure	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	and functioning of oligomeric proteins on the example of	GPC-10.2.1, GPC-10.2.2.
	hemoglobin. Cooperative changes in the conformation of	
	protomers. The possibility of regulating the biological	
	function of oligomeric proteins by allosteric ligands.	

8	Physico-chemical properties of proteins. Molecular weight,	GPC-5.1.1, GPC-5.2.1,
	size and shape, solubility, ionization and hydration.	GPC-5.3.1, GPC-10.1.2,
	Denaturation, signs and factors causing it.	GPC-10.2.1, GPC-10.2.2.
9	Methods of protein fractionation. The principles underlying	GPC-5.1.1, GPC-5.2.1,
	fractionation. Methods of quantitative determination of	GPC-5.3.1, GPC-10.1.2,
	protein (refractometric and biuretic). Electrophoresis.	GPC-10.2.1, GPC-10.2.2.
10	Principles of protein classification. Classification by	GPC-5.1.1, GPC-5.2.1,
	composition and biological functions, examples of	GPC-5.3.1, GPC-10.1.2,
	representatives of individual classes.	GPC-10.2.1, GPC-10.2.2.
11	Immunoglobulins, classes of immunoglobulins, features of	GPC-5.1.1, GPC-5.2.1,
	the domain structure and functioning.	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.
12	Enzymes, definition. Features of enzymatic catalysis. The	GPC-5.1.1, GPC-5.2.1,
	specificity of the enzymes action, types.	GPC-10.2.1, GPC-10.1.2,
12	Classification and normalistum of communes eventlas	GPC 5 1 1 GPC 5 2 1
15	Classification and nomenciature of enzymes, examples.	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.
14	The structure of enzymes. Catalytic and regulatory centers.	GPC-5.1.1, GPC-5.2.1,
	Interaction of enzymes with ligands. The mechanism of	GPC-5.3.1, GPC-10.1.2,
	action of enzymes. Formation of an enzyme-substrate	GPC-10.2.1, GPC-10.2.2.
	complex. The "key lock" hypothesis and the induced fit	
	hypothesis.	
15	Kinetics of enzymatic reactions. The dependence of the rate	GPC-5.1.1, GPC-5.2.1,
10	of enzymatic reactions on the temperature, pH.	GPC-5.3.1, GPC-10.1.2,
	concentration of the enzyme and substrate. The Michaelis-	GPC-10.2.1, GPC-10.2.2.
	Menten equation. Km.	
16	Enzyme cofactors: metal ions and their role in enzymatic	GPC-5.1.1, GPC-5.2.1,
	catalysis. Coenzymes as derivatives of vitamins. Coenzyme	GPC-5.3.1, GPC-10.1.2,
	functions of vitamins B_6 , PP and B_2 on the example of	GPC-10.2.1, GPC-10.2.2.
	transaminases and dehvdrogenases.	
17	Inhibition of enzyme activity: reversible (competitive, non-	GPC-5.1.1, GPC-5.2.1,
_ ,	competitive, uncompetitive) and irreversible. Drugs as	GPC-5.3.1, GPC-10.1.2,
	enzyme inhibitors.	GPC-10.2.1, GPC-10.2.2.
18	Allosteric regulation of enzyme activity. The role of	GPC-5.1.1, GPC-5.2.1,
	allosteric enzymes in cell metabolism. Allosteric effectors.	GPC-5.3.1, GPC-10.1.2,
	Features of the structure and functioning of allosteric	GPC-10.2.1, GPC-10.2.2.
	enzymes and their localization in metabolic pathways.	
	Regulation of enzyme activity according to the principle of	
	negative feedback.	
19	Regulation of the catalytic activity of enzymes by covalent	GPC-5.1.1, GPC-5.2.1,
	modification (phosphorylation and dephosphorylation) on	GPC-5.3.1, GPC-10.1.2,
	the example of enzymes involved in glycogen metabolism.	GPC-10.2.1, GPC-10.2.2.
20	Association and dissociation of protomers by the example	GPC-5.1.1, GPC-5.2.1,
	of protein kinase A and limited proteolysis during	GPC-5.3.1, GPC-10.1.2,
1	1	GPC-10.2.1, GPC-10.2.2.

	activation of proteolytic enzymes as ways to regulate the	
	catalytic activity of enzymes.	
21	Isoenzymes: origin, biological significance, examples.	GPC-5.1.1, GPC-5.2.1,
	Determination of enzymes and the isoenzyme spectrum of	GPC-5.3.1, GPC-10.1.2,
	blood plasma in order to diagnose diseases.	GFC-10.2.1, GFC-10.2.2.
22	Enzymopathies are hereditary (phenylketonuria) and	GPC-5.1.1, GPC-5.2.1,
	acquired (enzyme deficiency in diseases of the	GPC-5.3.1, GPC-10.1.2,
	gastrointestinal tract). The use of enzymes for the treatment	GPC-10.2.1, GPC-10.2.2.
	of diseases (enzyme therapy).	
23	The general scheme of synthesis and degradation of	GPC-5.1.1, GPC-5.2.1,
	pyrimidine nucleotides. Regulation.	GPC-5.3.1, GPC-10.1.2,
		GFC-10.2.1, GFC-10.2.2.
24	The general scheme of synthesis and degradation of purine	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	nucleotides. Regulation. Gout.	GPC-10.2.1, GPC-10.2.2.
25	Synthesis of deoxyribonucleotides Ribonucleotide	GPC-5.1.1. GPC-5.2.1.
23	reductase complex. Biosynthesis of thymidyl nucleotides	GPC-5.3.1, GPC-10.1.2,
	the role of folic acid and folate reductase. Antitumor	GPC-10.2.1, GPC-10.2.2.
	antiviral and antibacterial drugs as inhibitors of the	
	synthesis of ribonucleotides and deoxyribonucleotides	
26	The primary structure of nucleic acids DNA and RNA. The	GPC-5.1.1. GPC-5.2.1.
20	secondary structure of DNA (Watson and Crick model)	GPC-5.3.1, GPC-10.1.2,
	Bonds that stabilize the secondary structure of DNA	GPC-10.2.1, GPC-10.2.2.
	Complementarity Chargaff's rule Polarity Antiparallelism	
27	Hybridization of nucleic acids Denaturation and	GPC-5.1.1. GPC-5.2.1.
21	renaturation of DNA Hybridization (DNA-DNA DNA	GPC-5.3.1, GPC-10.1.2,
	RNA) I aboratory diagnostic methods based on nucleic	GPC-10.2.1, GPC-10.2.2.
	acid hybridization (PCR)	
28	The tertiary structure of DNA. The role of histone and non-	GPC-5.1.1, GPC-5.2.1,
20	histone proteins in organization of eukarvotic DNA	GPC-5.3.1, GPC-10.1.2,
	structure in the form of chromatin and chromosomes.	GPC-10.2.1, GPC-10.2.2.
	Covalent histone modification and its role in the regulation	
	of chromatin structure and activity.	
29	Replication. Principles of DNA replication. Stages of	GPC-5.1.1, GPC-5.2.1,
	replication. Initiation. Proteins and enzymes involved in the	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	formation of the replicative fork.	01 C-10.2.1, 01 C-10.2.2.
30	Elongation and termination of replication. Enzymes.	GPC-5.1.1, GPC-5.2.1,
	Asymmetric DNA synthesis. Fragments of Okazaki. The	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	role of DNA ligase in the formation of a leading and	01 C 10.2.1, 01 C 10.2.2.
	lagging strands.	
31	DNA damage and repair. Types of damage. Methods of	GPC-5.1.1, GPC-5.2.1,
	reparation. Defects of repair systems and hereditary	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	diseases.	Gr C 10.2.1, OI C-10.2.2.
32	Transcription. Characteristics of the components of the	GPC-5.1.1, GPC-5.2.1,
	RNA synthesis system. The structure of DNA-dependent	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1 GPC-10.2.2
		$OI C^{-10.2.1}, OI C^{-10.2.2.}$

	RNA polymerase: the role of subunits ($\alpha\alpha\beta\beta'$). Initiation of	
	the process. Elongation and termination of transcription.	
33	The primary transcript and its processing. Ribozymes as an example of the catalytic activity of nucleic acids. Biological role.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
34	The genetic code and its properties. Requirement of the components: amino acids, aminoacyl-t-RNA synthetases, t-RNA, ribosomes, energy sources, protein factors, enzymes.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
35	Assembly of a polypeptide chain on a ribosome. Formation of the initiator complex. Elongation: formation of a peptide bond (transpeptidation reaction). Translocation. Termination.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
36	Features of synthesis and processing of secreted proteins (for example, collagen and insulin).	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
37	Biochemistry of nutrition. The main components of food, their biological role, the daily requirements. Essential components of food.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
38	Nutritional importance of proteins. Biological value and functions of proteins. Nitrogen balance. Assessment of nutritive value of proteins, requirement of proteins, the norms of protein in the diet, protein deficiency.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
39	Protein digestion. Specificity and action of proteases, optimum pH and products. Formation and role of hydrochloric acid in the stomach. Protection of cells from the action of proteases.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
40	Absorption of digestion products. Transport of amino acids into intestinal cells. Features of amino acid transport in hepatocytes. x-glutamyl cycle. Disorders of protein digestion and amino acid transport.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
41	Vitamins. Classification, nomenclature. Provitamins. Hypo- , hyper- and vitamin deficiency, causes of occurrence. Vitamin-dependent and vitamin-resistant conditions.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
42	Minerals of food, macro- and microelements, biological role. Regional pathologies associated with a lack of trace elements (J ₂ , Se).	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
43	Biological membranes, structure, functions and general properties: fluidity, transverse asymmetry, selective permeability.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
44	Lipid composition of membranes - phospholipids, glycolipids, cholesterol. Membrane proteins: integral, peripheral, "anchored". The role of individual membrane components in the formation of structure and performance of functions.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.

45	Mechanisms of transport across membranes: simple	GPC-5.1.1, GPC-5.2.1,
	diffusion, uniport, symport and antiport, active transport,	GPC-5.3.1, GPC-10.1.2,
	regulated channels. Membrane receptors.	GPC-10.2.1, GPC-10.2.2.
46	Endergonic and exergonic reactions in a living cell. High-	GPC-5.1.1, GPC-5.2.1,
	energy compounds, definition, examples. Dehydrogenation	GPC-5.3.1, GPC-10.1.2,
	of substrates and hydrogen oxidation as the main energy	GFC-10.2.1, GFC-10.2.2.
	source for ATP synthesis.	
47	The structure of mitochondria and the structural	GPC-5.1.1, GPC-5.2.1,
	organization of the respiratory chain: NADH-CoQ	GPC-5.3.1, GPC-10.1.2,
	reductase, succinate CoQ reductase, CoQ-cytochrome C	GFC-10.2.1, GFC-10.2.2.
	reductase, cytochrome oxidase. Features of composition,	
48	Oxidative phosphorylation the essence of the process	GPC-5.1.1, GPC-5.2.1,
10	scheme substrates P/O coefficient Transmembrane	GPC-5.3.1, GPC-10.1.2,
	electrochemical potential as an intermediate form of energy	GPC-10.2.1, GPC-10.2.2.
	during ovidative phosphorylation. Mitchell's theory, H	
	ATP synthese: role localization structure mechanism of	
	ATP synthesis	
40	ATT Synthesis.	GPC 5 1 1 GPC 5 2 1
49	control) Uncoupling of respiration from oxidative	GPC-5.3.1, GPC-10.1.2,
	phosphorylation. Thermoregulatory function of brown	GPC-10.2.1, GPC-10.2.2.
	adipose tissue. Thermogenin	
50	Formation of reactive oxygen species (ROS): superoxide	GPC-5.1.1, GPC-5.2.1,
50	radical, hydrogen peroxide, hydroxyl radical, singlet	GPC-5.3.1, GPC-10.1.2,
	oxygen. Sources and generation of free radicals. The	GPC-10.2.1, GPC-10.2.2.
	physiological role of reactive oxygen species: generation of	
	ROS by macrophages.	
51	Harmful effects of free radicals: lipid peroxidation,	GPC-5.1.1, GPC-5.2.1,
	oxidation of carbonydrates, proteins and nucleic acids).	GPC-10.2.1, GPC-10.2.2.
52	Catabolism of the main nutrients in the cell - carbohydrates	GPC-511 GPC-521
52	fats, amino acids. The concept of specific and general	GPC-5.3.1, GPC-10.1.2,
	nothways of astabolism. Oxidative departmentation of	GPC-10.2.1, GPC-10.2.2.
	patriways of catabolishi. Oxidative decarboxylation of	
	Positions of PDH complex, Pogulation	
52	Citria agid evelo (TCA evelo): reactions of TCA evelo	GPC-511 GPC-521
55	chine actor cycle (TCA cycle). Teactions of TCA cycle,	GPC-5.3.1, GPC-10.1.2,
	metabolism	GPC-10.2.1, GPC-10.2.2.
54	Citric acid evalue scheme of process. The connection of the	GPC-511 GPC-521
54	cycle with the electron transport chain (ETC) Regulation of	GPC-5.3.1, GPC-10.1.2,
	TCA cycle. Amphibolic nature of the citric acid cycle.	GPC-10.2.1, GPC-10.2.2.
	anaplerotic reactions.	
55	Basic carbohydrates of animals, biological role.	GPC-5.1.1, GPC-5.2.1,
	Carbohydrates of food, digestion of carbohydrates.	GPC-5.3.1, GPC-10.1.2,
	Absorption of monosaccharides.	UFU-10.2.1, UFU-10.2.2.
56	Glucose as an important metabolite of carbohydrate	GPC-5.1.1, GPC-5.2.1,
	metabolism: a general scheme of sources and ways of	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.

	glucose consumption in the body. Maintaining a constant	
	blood glucose level, Quantitative determination blood	
	glucose. The role of insulin, glucagon, and adrenaline in	
	the regulation of glucose levels.	
57	Aerobic glycolysis. The sequence of reactions before the	GPC-5.1.1, GPC-5.2.1,
	formation of pyruvate. Physiological significance of	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	aerobic glycolysis. The use of glucose for the synthesis of	01 C-10.2.1, 01 C-10.2.2.
	fats. The energy yield of aerobic glycolysis.	
58	Anaerobic glycolysis. Reactions of glycolytic oxido-	GPC-5.1.1, GPC-5.2.1,
	reduction (regeneration of cytosolic NAD ⁺). Distribution	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1 GPC-10.2.2
	and physiological significance of anaerobic glycolysis.	GI C 10.2.1, GI C 10.2.2.
	Energy yield of anaerobic glycolysis.	
59	Glucose biosynthesis (gluconeogenesis) from amino acids,	GPC-5.1.1, GPC-5.2.1,
	glycerol and lactic acid; regulation of gluconeogenesis.	GPC-5.3.1, GPC-10.1.2, GPC 10.2.1, GPC 10.2.2
	Biotin, role in the formation of oxaloacetate. The	01 C-10.2.1, 01 C-10.2.2.
	relationship of glycolysis in muscles and gluconeogenesis	
	in the liver (Cori cycle).	
60	Glycogen, biological significance. Biosynthesis and	GPC-5.1.1, GPC-5.2.1,
	mobilization of glycogen. Regulation of glycogenesis	GPC-5.3.1, GPC-10.1.2,
	and glycogenolysis.	GFC-10.2.1, GFC-10.2.2.
61	Hereditary metabolic disorders of monosaccharides and	GPC-5.1.1, GPC-5.2.1, GPC 5.3.1, GPC 10.1.2
	disaccharides: galactosemia, intolerance to fructose and	GPC-10.2.1, GPC-10.2.2.
	disaccharides. Glycogen storage diseases.	,
62	Lipids. General characteristics. Biological role.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2
	Classification of lipids. Fatty acids, structural features.	GPC-10.2.1, GPC-10.2.2.
63	Digestion of dietary lipids Absorption of digestion	GPC-5.1.1. GPC-5.2.1.
05	products. Disorders of digestion and absorption of lipids	GPC-5.3.1, GPC-10.1.2,
	Resynthesis of triacylalycerols in enterocytes. Formation of	GPC-10.2.1, GPC-10.2.2.
	chylomicrons and transport of fats. Linoprotein linase, its	
	role	
64	Plasma lipoproteins (LP) classification by density and	GPC-5.1.1, GPC-5.2.1,
01	electrophoretic mobility Features of the structure and lipid	GPC-5.3.1, GPC-10.1.2,
	composition The main apolipoproteins their functions The	GPC-10.2.1, GPC-10.2.2.
	functions of LP blood plasma. The place of formation and	
	transformation of various types of LP	
	Hyperlipoproteinemia Dyslipoproteinemia Diagnostic	
	value of determining the lipid spectrum of blood plasma	
65	Deposition and mobilization of fats in adipose tissue, the	GPC-5.1.1, GPC-5.2.1,
00	physiological role of these processes. The role of insulin	GPC-5.3.1, GPC-10.1.2,
	adrenaline and glucagon in the regulation of fat	GPC-10.2.1, GPC-10.2.2.
	metabolism.	
66	Oxidation of fatty acids in the cell Activation and transport	GPC-5.1.1, GPC-5.2.1.
00	of acyl CoA into mitochondria. Sequence of	GPC-5.3.1, GPC-10.1.2,
	reactions β -oxidation of fatty acids, regulation, energy	GPC-10.2.1, GPC-10.2.2.
	yield.	

67	Biosynthesis of fatty acids (FA) in the cell. Synthesis of	GPC-5.1.1, GPC-5.2.1,
	palmitic acid. Fatty acid synthase complex: structure,	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1 GPC-10.2.2
	regulation. Elongation of the FA, formation of double bonds in the radicals of the FA	01 C 10.2.1, 01 C 10.2.2.
68	Biosynthesis and utilization of ketone bodies.	GPC-5.1.1, GPC-5.2.1,
	Overproduction of ketone bodies. Causes of ketonemia and	GPC-5.3.1, GPC-10.1.2,
	ketonuria during fasting and diabetes mellitus.	GPC-10.2.1, GPC-10.2.2.
69	Cholesterol Ways of admission, use and excretion from the	GPC-5.1.1, GPC-5.2.1,
07	body. The level of cholesterol in the blood serum	GPC-5.3.1, GPC-10.1.2,
	Cholesterol biosynthesis its stages Regulation of	GPC-10.2.1, GPC-10.2.2.
	cholesterol synthesis.	
70	The role of low and high density lipoproteins (LDL and	GPC-5.1.1, GPC-5.2.1,
	HDL) in cholesterol metabolism. Biochemical bases of	GPC-5.3.1, GPC-10.1.2,
	atherosclerosis development. Quantitative determination of	GPC-10.2.1, GPC-10.2.2.
	total cholesterol in blood serum. Biomedical importance.	
71	The general scheme of sources that contribute (input) and	GPC-5.1.1, GPC-5.2.1,
	the metabolic pathways that utilize (output) the amino	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	acids. Dynamic state of proteins in the body. The reasons	01 C-10.2.1, 01 C-10.2.2.
	for constant updating of body proteins. "Essential" amino	
	acids.	
72	Catabolism of amino acids. Common ways of amino acid	GPC-5.1.1, GPC-5.2.1,
	degradation. Transamination of amino acids. The scheme of	GPC-5.3.1, GPC-10.1.2,
	reactions, enzymes, the role of vitamin B ₆ . The biological	GFC-10.2.1, GFC-10.2.2.
	significance of transamination. Diagnostic value of	
	determination of transaminases in blood serum.	
73	Deamination of amino acids: direct, indirect. Types of	GPC-5.1.1, GPC-5.2.1,
	direct deamination. Oxidative deamination. Oxidases of L-	GPC-5.3.1, GPC-10.1.2,
	amino acids. Glutamate dehydrogenase. Reaction, cofactor,	GPC-10.2.1, GPC-10.2.2.
	regulation.	
74	Indirect deamination of amino acids. Scheme of the	GPC-5.1.1, GPC-5.2.1,
	process, substrates, enzymes, cofactors.	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.
75	The main sources of ammonia in the human body. Toxicity	GPC-5.1.1, GPC-5.2.1,
	of ammonia. The role of glutamine and asparagine in	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1 GPC-10.2.2
	ammonia neutralization. Kidneys glutaminase, formation	01 0 10.2.1, 01 0 10.2.2.
	and excretion of ammonium salts.	
76	Synthesis of urea. Reactions of urea cycle. Arrangement of	GPC-5.1.1, GPC-5.2.1,
	urea cycle enzymes, the energy yield of the process, its	GPC-5.3.1, GPC-10.1.2,
	regulation. Blood urea estimation, clinical significance.	GFC-10.2.1, GFC-10.2.2.
77	Decarboxylation of amino acids. Biogenic amines:	GPC-5.1.1, GPC-5.2.1,
	histamine, serotonin, GABA, putrescine. Reactions of their	GPC-5.3.1, GPC-10.1.2,
	synthesis, enzymes, cofactor. Biological role of biogenic	Ur C-10.2.1, UPC-10.2.2.
	amines. Deamination and methylation of amines as ways of	
	their neutralization.	
78	Metabolism of phenylalanine and tyrosine. Features of	GPC-5.1.1, GPC-5.2.1,
	tyrosine metabolism in different tissues. Synthesis of	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.

	catecholamines, melanins, and iodothyronines. Hereditary	
	biochemical blocks and disorder's in the metabolism of	
	phenylalanine and tyrosine: phenylketonuria alkaptonuria	
	albinism parkinsonism Diagnostics and treatment	
70	Endocrino, personino and outcorino systems of intercollular	GPC-511 GPC-521
19	Endocrine, paracrine and autocrine systems of intercentular	GPC-5.3.1, GPC-10.1.2,
	communication. The role of normones in the regulation of	GPC-10.2.1, GPC-10.2.2.
	metabolism. Regulation of normone synthesis according to	
	the feedback principle.	
80	Classification of hormones by chemical structure and	GPC-5.1.1, GPC-5.2.1, GPC 5.3.1, GPC 10.1.2
	biological functions.	GPC-10.2.1. GPC-10.2.2.
01	Tons (a 11 and a 11 also have a superstant Code also as	CPC 5 1 1 CPC 5 2 1
81	l'arget cells and cellular normone receptors. Cytoplasmic	GPC-5.3.1, GPC-10.1.2
	membrane receptors, receptors localized in the cytoplasm.	GPC-10.2.1, GPC-10.2.2.
	Regulation of the number and activity of receptors.	
	Mechanisms of signal transduction by membrane receptors,	
	G-protein.	
82	Cyclic AMP and GMP as secondary messengers. Activation	GPC-5.1.1, GPC-5.2.1,
	of protein kinases and phosphorylation of proteins	GPC-10.2.1. GPC-10.2.2.
	responsible for the hormonal effect.	61 6 10.2.1, 61 6 10.2.2.
83	Phosphatidylinositol cycle as a mechanism of intracellular	GPC-5.1.1, GPC-5.2.1,
	communication. Inositol 1,4,5 triphosphate and	GPC-5.3.1, GPC-10.1.2,
	diacylglycerol are secondary messengers of signal	01 C-10.2.1, 01 C-10.2.2.
	transmission. Calcium ions as secondary intermediaries,	
	calmodulin.	
84	Transmission of signals through intracellular receptors.	GPC-5.1.1, GPC-5.2.1,
	Formation of the hormone-receptor complex and its	GPC-5.3.1, GPC-10.1.2,
	interaction with DNA, hormone responsible elements	GPC-10.2.1, GPC-10.2.2.
	(HRE). Transmission of signals through receptors coupled	
	with ion channels. The structure of the acetylcholine	
	receptor.	
85	Hormones of the hypothalamus and anterior pituitary gland,	GPC-5.1.1, GPC-5.2.1,
	chemical nature and biological role.	GPC-5.3.1, GPC-10.1.2,
		GPC-10.2.1, GPC-10.2.2.
86	Regulation of water-salt metabolism. Structure, mechanism	GPC-5.1.1, GPC-5.2.1,
	of action and functions of aldosterone and vasopressin. The	GPC-5.3.1, GPC-10.1.2,
	role of the renin-angiotensin-aldosterone system. Atrial	GPC-10.2.1, GPC-10.2.2.
	natriuretic factor.	
87	Regulation of calcium and phosphate ion metabolism.	GPC-5.1.1, GPC-5.2.1,
	Structure, biosynthesis and mechanism of action of	GPC-5.3.1, GPC-10.1.2,
	parathyroid hormone, calcitonin and calcitriol. Causes and	GPC-10.2.1, GPC-10.2.2.
	manifestations of rickets, hypo- and hyperparathyroidism	
88	Insulin - structure, synthesis and secretion Regulation of	GPC-5.1.1, GPC-5.2.1,
00	insulin synthesis and secretion. The mechanism of action of	GPC-5.3.1, GPC-10.1.2,
	insulin The role of insulin and counterregulatory hormonos	GPC-10.2.1, GPC-10.2.2.
	(adrenaling and glugger) in the regulation of match allow	
	(aurenanne and grucagon) in the regulation of metabolism.	

	Changes in hormonal status and metabolism in diabetes	
	mellitus. Diabetic coma.	
89	Thyroid hormones. Regulation of synthesis and secretion of	GPC-5.1.1, GPC-5.2.1,
	iodothyronines and their effect on metabolism and body	GPC-5.3.1, GPC-10.1.2,
	functions. Changes in metabolism in hypo and	OF C-10.2.1, OF C-10.2.2.
	hyperthyroidism. Causes and manifestations of endemic	
	goiter.	
90	Hormones of the adrenal cortex (corticosteroids). Their	GPC-5.1.1, GPC-5.2.1,
	effect on cell metabolism. Changes in metabolism in hypo-	GPC-5.3.1, GPC-10.1.2,
	and hyperfunction of the adrenal cortex.	OF C-10.2.1, OF C-10.2.2.
91	Hormones of the adrenal medulla. Secretion of	GPC-5.1.1, GPC-5.2.1,
	catecholamines. Mechanism of action and biological	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	functions of catecholamines. Pathology of the adrenal	Gr C 10.2.1, Gr C 10.2.2.
	medulla.	
92	Metabolism of endogenous and foreign toxic substances.	GPC-5.1.1, GPC-5.2.1,
	The main stages of neutralization of xenobiotics. Scheme	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	microsomal oxidation. The role of cytochrome P_{450} .	01 C 10.2.1, 01 C 10.2.2.
	Induction of cytochrome P ₄₅₀ by drugs.	
93	Degradation of heme to bile pigments. The scheme of the	GPC-5.1.1, GPC-5.2.1,
	process, localization. The concepts of "direct" and	GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2
	"indirect" bilirubin. Diagnostic value of determination of bilirubin in blood and urine	Gi e 10.2.1, Gi e 10.2.2.
94	Disorders of heme metabolism. Jaundice: hemolytic.	GPC-5.1.1, GPC-5.2.1,
	hepatocellular (parenchymal), obstructive, neonatal-	GPC-5.3.1, GPC-10.1.2,
	physiologic jaundice. Causes of the syndrome, differential	GPC-10.2.1, GPC-10.2.2.
	diagnosis.	
95	Metabolism of endogenous and foreign toxic substances.	GPC-5.1.1, GPC-5.2.1,
	The main stages of neutralization of xenobiotics.	GPC-5.3.1, GPC-10.1.2,
	Conjugation phase. Schemes of conjugation reactions with	GPC-10.2.1, GPC-10.2.2.
	PAPS and UDP-glucuronic acid. Neutralization of	
	putrefaction products of amino acids in the intestine.	
96	Human hemoglobins, structure. Transport of oxygen and	GPC-5.1.1, GPC-5.2.1,
	carbon dioxide. Fetal hemoglobin and its physiological	GPC-5.3.1, GPC-10.1.2,
	significance. Hemoglobinopathies.	GPC-10.2.1, GPC-10.2.2.
97	Heme biosynthesis. The scheme of the process, the	GPC-5.1.1, GPC-5.2.1,
	chemistry of the first two reactions, localization. Regulation	GPC-5.3.1, GPC-10.1.2,
	of the activity of enzymes ALK-synthase and ALK-	GPC-10.2.1, GPC-10.2.2.
	dehydratase. Sources of iron for heme synthesis, iron	
	absorption, transport in the blood, deposition.	
98	Serum proteins, the biological role of the main protein	GPC-5.1.1, GPC-5.2.1,
	fractions, the importance of their determination for the	GPC-5.3.1, GPC-10.1.2,
	diagnosis of diseases. Plasma enzymes, enzyme	GPC-10.2.1, GPC-10.2.2.
	diagnostics. Quantitative determination of the activity of	
	aminotransferases (AlAt, AsAt).	
99	Collagen: features of amino acid composition, primary and	GPC-5.1.1, GPC-5.2.1,
	spatial structure. Features of collagen biosynthesis and	GPC-5.3.1, GPC-10.1.2,

	maturation. The role of ascorbic acid in the maturation of	GPC-10.2.1, GPC-10.2.2.
	collagen.	
100	Structural organization of the intercellular matrix. Adhesive proteins of the intercellular matrix: fibronectin and laminin, their structure and functions. The structure and functions of glycosaminoglycans (hyaluronic acid, chondroitin sulfates, heparin). The structure of proteoglycans.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
101	The molecular structure of myofibrils. Structure and function of the main proteins of myofibrils myosin, actin, tropomyosin, troponin.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
102	Biochemical mechanisms of muscle contraction and relaxation. The role of calcium ions and other ions in the regulation of muscle contraction. Features of energy metabolism in muscles; the role of creatine phosphate.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
103	Chemical composition of nervous tissue. Myelin membranes: composition and structural features. Energy metabolism in the nervous tissue. The value of aerobic glucose degradation. Neurotransmitters of the nervous system. Physiologically active brain peptides.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.
104	The importance of water for the vital activity of the body. Distribution of water in tissues, the concept of intracellular and extracellular fluids. Water balance, regulation of water metabolism.	GPC-5.1.1, GPC-5.2.1, GPC-5.3.1, GPC-10.1.2, GPC-10.2.1, GPC-10.2.2.

The full fund of assessment tools for discipline "Biochemistry" is available in the EIES of VolgSMU at the link (s):

https://elearning.volgmed.ru/course/view.php?id=6295 https://elearning.volgmed.ru/course/view.php?id=6300

Considered at the meeting of the department of Theoretical biochemistry with a course of clinical biochemistry "10" May 2023, protocol № 16

Head of the Department

Ogol

O.V. Ostrovskij.