Тематический план занятий семинарского типа по дисциплине «Биокинетика» для обучающихся по образовательной программе специальности 30.05.01 Медицинская биохимия, (уровень специалитета),

форма обучения очная на 2023-2024 учебный год

№	Тематические блоки	Часы (академ.)
1	Введение в биокинетику. Предмет изучения биокинетики. Химическая кинетика как основа биокинетики. Ферментативная кинетика.	2
2	Математические методы биокинетики. Биологические модели. Обезразмеривание системы как важный шаг исследования модели. Численные методы расчета модели.	2
3	Основные понятия ферментативной кинетики. Закон действующих масс при моделировании биохимических реакций. Математическая модель ферментативной реакции. Теория Михаэлиса-Ментен. Обезразмеривание системы как важный шаг исследования модели. Численные методы расчета модели. Модель ферментативной реакции как пример жесткой системы. Кооперативные явления в ферментативных реакциях их модели.	2
4	Ферментативная кинетика. Модель ферментативной реакции как пример жесткой системы. Кооперативные явления в ферментативных процессах, их моделирование. Решение практической задачи.	2
5	Кинетический эксперимент. Ингибирование ферментативных реакций. Модель ферментативной реакции как пример жесткой системы. Кооперативные явления в ферментативных их модели. Инактивация фермента. Кинетика действия ферментов в открытых системах Решение задачи.	2
6	Определение константы и скорости порядка реакции Кинетика сложных реакций. Влияние различных факторов на скорость реакции.	2
7	Кинетические схемы и механизм ферментативной реакции. Биохимические системы с обратной связью. Кинетические кривые ферментативных реакций Критерии бистабильности. Зависимость решений от параметров, наличие критических — бифуркационных значений параметров, обеспечивающих возможность параметрического переключения в триггерных системах. Бифуркационные кривые. Стабильные и нестабильные стационарные состояния. Нульклины в фазовой плоскости. Роль переключений в триггерных биологических системах для обеспечения регуляции биологической системы, дифференциации и др. Системы с взаимной активацией и репрессией. Биологические триггеры в биохимической системе.	2
8	Кинетические схемы и механизм ферментативной реакции. Модель ферментативной системы с линейной обратной связью и насыщаемой обратной реакцией. Бистабильность. Бифуркационные диаграммы определить стабильные и не стабильные состояния системы. Решение задачи.	2
9	Молекулярная рецепция. Рецепторы и лиганды. Агонисты и антагонисты. Принцип структурной комплементарности. Специфическое и неспецифическое связывание	2

10 Молекулярная рецепция. Рецепторы и лиганды. Агонисты и антагонисть Принцип структурной комплементарности. Специфическое и неспецифическое связывание	
11 Мембранный транспорт. Мембраны клетки. Механизмы транспорта: пассивна диффузия, облегченная диффузия, активный транспорт, транслокация групп Кинетика транспорта ионов: уравнения Нерста, мембранные потенциаль Мембраны клетки. Механизмы транспорта: пассивная диффузия, облегченна диффузия, активный транспорт, транслокация групп. Кинетика транспорта ионов уравнения Нерста, мембранные потенциалы.	і. я 2
12 Мембранный транспорт. Кинетика транспорта ионов: уравнения Нерста мембранные потенциалы. Решение задачи.	a, 2
Кинетика транспорта ионов: уравнения Нерста, мембранные потенциаль Потенциал действия / Возбуждение нервного волокна. Понятия потенциал покоя, деполяризация, реполяризация, гиперполяризация Концентрация ионов и ионные токи как основа формирования потенциал действия. Электрохимический потенциал как движущая сила трансмембранны токов. Формула Нернста. Регистрация токов в условиях фиксации потенциала Модель потенциала действия Ходжкина-Хаксли: понятие «проводимость» дл ионов Na+ и K+;управляющие частицы K+- и Na+ - проводимости: параметры m, h, α, β; дифференциальные уравнения, описывающие модель Ходжкина Хаксли. Модель Фитцхью-Нагумо: предпосылки создания, параметри проводимости для Na+ и K+, система ДУ. Условия применения двухвариабельно модели. Уравнение реакции диффузии. Сравнение уравнения диффузии кабельным уравнением. Примеры биологических процессов, описываемы уравнением реакции диффузии. Возможные пути решения данног дифференциального уравнения.	а. х а. я а. 2 1- ы й с х
14 Математическая модель клетки. Модель эритроцита: гликолиз, пентозный цикладенозин нуклеотидный метаболизм, мембранный транспорт и осмотическа модель. Модель клеточного цикла. Регуляция клеточного цикла. Особенност моделирования. Структура модели Новака-Тайсона. Феноменологическая механизменная модели клеточного цикла. Математическое выражение модел Новака-Тайсона.	я и и 2
15 Математическая модель клетки. Модель эритроцита: гликолиз, пентозный цикл аденозин нуклеотидный метаболизм, мембранный транспорт и осмотическа модель.	
16 Кинетические особенности роста клеточной культуры. Интегральная форм уравнения роста клеточной популяции.	a 2
17 Промежуточная аттестация (зачет)	2
Итого	

Рассмотрено на заседании кафедры теоретической биохимии с курсом клинической биохимии «10» мая 2023 г., протокол № 16

Зав. кафедрой теоретической биохимии с курсом клинической биохимии, д.м.н, профессор

agol

О.В. Островский