Тематический план занятий лекционного типа по дисциплине «Биофизика белка»

для обучающихся по образовательной программе специалитета по специальности 30.05.01 Медицинская биохимия, направленность (профиль) Медицинская биохимия, форма обучения очная

на 2023-2024 учебный год

No	Темы занятий лекционного типа	Часы
1		(академ.)
1.	Введение в биофизику белка. Основные понятия физики белка. Функции белков.	
	Аминокислотная последовательность, пространственная структура. Глобулярные,	
	фибриллярные и мембранные белки. Классификация структур белка: первичная,	
	вторичная, третичная, четвертичная структура белка. Биосинтез белка; сворачивание	2
	белка in vivo и in vitro. Пост-трансляционные модификации. Современные методы	
	исследованиие структуры и динамики биомакромолекул. Основные решенные и	
	нерешенные проблемы физики биомакромолекул. ²	
2.	Характеристика основных элементов вторичной структуры белков ¹ . Вторичная	
	структура полипептидов. Спирали: 27, 310, a, p, poly(Pro) II. Антипараллельная и	
	параллельная бета-структура. Бета-изгибы. Методы экспериментального	
	обнаружения вторичной структуры. Свойства боковых групп аминокислотных	
	остатков. Включение аминокислотных остатков во вторичную структуру. Аланин,	2
	глицин, пролин, валин. Неполярные, короткие полярные и длинные полярные	
	боковые группы. Заряженные боковые группы. Гидрофобные поверхности на	
	вторичных структурах в белках ² .	
3.	Пространственное строение белков ¹ . Фибриллярные белки, их функции и их	
	периодичные первичные и вторичные структуры; α-кератин, β-фиброин шелка,	
	коллаген. Упаковка длинных α-спиралей и обширных β-листов. Мембранные белки,	
	особенности их строения и функции. Бактериородопсин, фотосинтетический центр,	
	порин. Селективная проницаемость мембранных пор. Понятие о туннельном	
	эффекте. Глобулярные белки. Упрощенное представление структур белковых	
	глобул; структурные классы. Строение b-белков: b-слои, их продольная и перпендикулярная упаковка. Преимущественная антипараллельность b-структуры	
	в b-белках. Правопропеллерная скрученность b-листов. Топология b-белков.	2
	Строение а-белков. Пучки и слои спиралей. Модель квазисферической глобулы из а-	
	спиралей. Плотная упаковка при контакте а-спиралей. Строение а/ь-белков.	
	Топология b-a-b субъединиц. Строение a+b белков. Физические принципы строения	
	белковой глобулы. "Стандартные" третичные структуры. Основные закономерности,	
	наблюдаемые в структурах белковых глобул. Статистика мелких деталей белковых	
	структур. Типичность "квазислучайного" чередования аминокислот в первичных	
	структурах глобулярных белков ² .	
4.	Кооперативные переходы в белковых молекулах. Обратимость денатурации белков.	
	Тепловая и холодовая денатурация ¹ . Энергетическая щель между нативной укладкой	
	белковой цепи и прочими ее глобулярными укладками: основное физическое	
	отличие белковой цепи от случайного сополимера. Самоорганизация белков іп	
	vivo. Для чего нужны шапероны? Самоорганизация белка in vitro. "Парадокс	2
	Левинталя". Поиск метастабильных (накапливающихся) интермедиатов	2
	сворачивания белков. Расплавленная глобула — обычный интермедиат	
	сворачивания. Сворачивание некоторых белков обходится без каких-либо	
	метастабильных интермедиатов. Поиск и изучение нестабильных переходных	
	состояний в сворачивании белка. Нуклеационный механизм сворачивания. Экспериментальные подходы к определению ядер сворачивания белков. Решение	
	окспериментальные подходы к определению ядер сворачивания ослков. Решение	

	"парадокса Левинталя": к стабильной структуре цепи автоматически ведет сеть быстрых путей сворачивания. Для этого необходимо только, чтобы между нативной укладкой цепи и прочими ее глобулярными укладками существовала бы заметная энергетическая щель. Обсуждение аномально медленного образования стабильной структуры в некоторых белках (серпины, прионы) ² .	
5.	Методы исследования свойств биополимеров ¹ . Методы спектросопии КД для экспериментального обнаружения вторичной структуры. Калориметрические методы исследования термодинамических характеристик биомакромолекул. Критерий Вант-Гоффа для перехода "все-или-ничего". Экспериментальные подходы к определению ядер сворачивания белков. — Шевроновый график. Вычислительные методы молекулярной динамики биомакромолекул. Расчет ньютоновских траекторий движения. Метод нормальных мод. Методы ускорения расчётов молекулярной динамики. Учёт влияния среды в молекулярной динамике. Периодические граничные условия. Термостаты в молекулярной динамике. Методы докинга лигандов в активных центрах белков. Метод Монте-Карло. Метод Монте-Карло с критерием Метрополиса. Глобальная оптимизация в пространстве последовательностей аминокислот. Локальная и глобальная минимизация потенциальной энергии биомакромолекул. Туннельный алгоритм. Методы интервального анализа ² .	2
6.	Предсказание и дизайн белковых структур ¹ . Представление о подходах к предсказанию вторичных и пространственных структур белков по их аминокислотным последовательностям. "Опознавание" белковых структур по гомологии последовательностей. Выделение стабильных структур белковой цепи. "Шаблоны" белковых структур. Белковая инженерия и дизайн ² .	2
7.	Функция белка и его структура ¹ . ДНК-связывающие белки. Иммуноглобины. Ферменты. Активный центр — "дефект" глобулярной структуры. Каталитический и субстрат-связывающий центры. Ингибирование. Кофакторы. Многовалентные ионы. Механизм ферментативного катализа. Пример: сериновые протеазы. Теория переходного состояния в катализе и ее подтверждение методами белковой инженерии. Узнавание "ключ-замок". "Двойное сито" повышает специфичность. Индуцированное соответствие. Доменная структура: киназы, дегидрогеназы. Аллостерия — взаимодействие активных центров. Гемоглобин и миоглобин ² .	2
Итог	0	14

¹ - тема

Рассмотрено на заседании кафедры теоретической биохимии с курсом клинической биохимии «10» мая 2023 г., протокол № 16

agol

Зав. кафедрой теоретической биохимии с курсом клинической биохимии, д.м.н, профессор

О.В. Островский

 $^{^{2}\,}$ - сущностное содержание