Тематический план занятий лекционного типа по дисциплине «Математический анализ» для обучающихся по образовательной программе бакалавриата по направлению подготовки

12.03.04 Биотехнические системы и технологии, направленность (профиль) Инженерное дело в медико-биологической практике,

форма обучения очная на 2023- 2024 учебный год (1-2 семестр)

№	Темы занятий лекционного типа	Часы (академ.)
	1 семестр	
1.	Введение в математический анализ. Множества. Основные понятия теории множеств. Способы задания множеств. Виды множеств. Операции над множествами и их свойства. Диаграммы Эйлера Венна. Мощность множества. Понятие мощности множества. Множество вещественных чисел. Отображения множеств2	2
2.	Функция. Основные понятия. Способы задания функций. Основные характеристики функций. Сложные и обратные функции Основные элементарные функции, их свойства и графики Основные функции. Элементарные функции, их свойства и графики. Классификация функций.2	2
3.	Числовые последовательности. Понятие числовой последовательности. Способы задания последовательностей. Ограниченные и монотонные последовательности. Предел числовой последовательности. Его геометрический смысл Свойства предела числовой последовательности. Теорема Вейерштрасса. 2	2
4.	Предел функции. 1 . Предел функции в точке и на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Связь между бесконечно большими и бесконечно малыми величинами. Свойства предела функции. Односторонние пределы. Теоремы о пределах. Замечательные пределы ² .	2
5.	Непрерывность функций. Понятие непрерывности. Функция, непрерывная на интервале и в точке. Точки разрыва функции и их классификация. Основные теоремы о непрерывных функциях. Непрерывность элементарных функций. Свойства функций непрерывных на отрезке. Теорема Вейерштрасса, теорема Больцано-Коши и следствия из них. 2	2
6.	Сравнение бесконечно малых. Порядок и эквивалентность функций. Бесконечно малые функции. Порядок малости бесконечно малой. Сравнение бесконечно малых. Эквивалентность бесконечно малых величин. Использование эквивалентных бесконечно малых при нахождении пределов функций. Задача о выделении главной части. 2	2
7.	Производная функции и дифференциал. Понятие функции, дифференцируемой в точке. Задачи, приводящие к понятию производной. Определение производной. Зависимость между 2 непрерывностью и дифференцируемостью функции. Правила	2

	дифференцирования функций. Дифференциал функции. Дифференцирование неявной, обратной функции, функции,	
	заданной параметрически. Логарифмическое дифференцирование. Практические приложения производной ² .	
8.	Некоторые теоремы о дифференцируемых функциях. 1. Свойства дифференцируемых функций: Теорема Ферма. Теоремы Роля и Коши, их применение. Теорема Лагранжа, формула Лагранжа, следствия из них. Правило Лопиталя. Правило Лопиталя. 2	2
9.	Производные и дифференциалы высших порядков. ¹ Производные и дифференциалы высших порядков. Формула Тейлора. Разложение основных элементарных функций по формуле Тейлора. Разложение некоторых элементарных функций по формуле Тейлора (Маклорена) ²	2
10.	Исследование поведения функций с помощью производных: возрастание и убывание функций; экстремумы. Чсловия монотонности функции. Условия монотонности функции (необходимые и достаточные). Экстремум функции. Необходимое условие и достаточные условия его существования. Наибольшее и наименьшее значения функции, дифференцируемой на отрезке	2
11.	Исследование поведения функций с помощью производных: выпуклость графика функции, точки его перегиба; асимптоты. Выпуклость и вогнутость графика функции. Точки перегиба. Асимптоты. Общая схема исследования функции ²	2
12.	Кривизна кривой. Кривизна кривой. Понятие кривой, гладкая кривая. Угол смежности. Средняя кривизна дуги. Кривизна линии в данной точке. Вычисление кривизны линии: заданной в декартовой системе координат; заданной параметрически; заданной уравнением в полярных координатах. Радиус кривизны. Радиус кривизны линии. Центр кривизны и круг кривизны данной кривой в данной точке. Эволюта. Главная нормаль. Бинормаль. Кручение кривой. ²	2
13.	Неопределенный интеграл. Понятие первообразной и неопределенного интеграла. Определение первообразной функции. Примеры первообразных функций. Понятие неопределенного интеграла. Геометрическое представление неопределенного интеграла. Свойства неопределенного интеграла. Основные методы интегрирования. Интегрирование рациональных дробей.	2
14.	Интегрирование рациональных дробей. Многочлены. Деление многочленов. Рациональные дроби. Интегрирование простейших рациональных дробей.	2
15.	нтегрирование некоторых иррациональных и трансцендентных функций. ¹	2
16.	Определенный интеграл. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл. 2 Геометрический смысл определенного интеграла. Свойства определенного интеграла. Формула Ньютона-Лейбница.	2
17.	Геометрические и механические приложения определенного интеграла. Геометрические приложения определенного интеграла. Механические приложения определенного интеграла. Приближенное вычисление определенного интеграла.	2
18.	Несобственные интегралы. Определения понятий «собственный интеграл» и «несобственный интеграл». Интегралы с	2

	бесконечными пределами. Несобственные интегралы от	
	неограниченных функций. Признаки сходимости несобственных	
	интегралов. ²	
19.	Функции нескольких переменных. Функция нескольких	
	переменных: Предел функции нескольких независимых	2
	переменных. Непрерывность функции нескольких переменных ²	
	Итого	38 часов
	2 семестр	
1.	Частные производные. ¹ Частные производные. Геометрический	
1.	смысл частных производных функции двух переменных. Полный	2
	дифференциал. Практические приложения полного дифференциала.	2
	Дифференцирование сложных функций ²	
2.	Приложения частных производных. Касательная плоскость к	
	поверхности. Нормаль к поверхности. Производная по	2
	направлению. Градиент ²	
3.	Повторное дифференцирование: частные производные и	
	дифференциалы высших порядков. Частные производные высших	
	порядков. Дифференциалы высших порядков. Дифференциал	2
	второго порядка. Полный дифференциал п-го порядка; Формула	
	Тейлора. Неявные функции. Теорема существования неявной	
1	функции двух переменных. Экстремумы функции многих переменных. Понятие экстремума	
4.	функции нескольких переменных. Необходимые и достаточные	2
	условия экстремума. Условный экстремум ²	2
5.	Метод наименьших квадратов. ¹ Метод наименьших квадратов. ²	2
		2
6.	Двойной интеграл. Определение двойного интеграла и его геометрический смысл. Свойства двойного интеграла. Вычисление	2
	двойного интеграла в декартовых координатах ²	2
7.	Замена переменных в двойных интегралах. Замена переменной в	_
' •	двойном интеграле. Переход к полярным координатам ² .	2
8.	Практические приложения двойных интегралов. ¹ . Приложения	
	двойного интеграла к геометрии. Приложения двойного интеграла	2
	κ физике ² .	
9.	Тройной интеграл. Определение тройного интеграла. Вычисление	2
	тройного интеграла в декартовой системе координат ² .	2
10.	Замена переменных в тройном интеграле. Замена переменных в	
	тройном интеграле. Вычисление тройного интеграла в	2
1 1	цилиндрической системе координат ²	
11.	Практические приложения тройных интегралов. Геометрические приложения тройного интеграла. Основные физические	2
	приложения тройного интеграла. Основные физические приложения тройного интеграла.	<i>L</i>
12.	Криволинейные интегралы 1-го рода.1 Основные понятия.	
14.	Основные свойства криволинейного интеграла по длине дуги (І	2
	рода). Вычисление криволинейного интеграла I рода. 2	-
13.	Криволинейные интегралы 2-го рода. Понятие криволинейного	
15.	интеграла второго рода. Свойства криволинейного интеграла	2
	второго рода. Вычисление криволинейного интеграла второго	2
	$poдa^2$.	
14.	Формула Грина. Условия независимости криволинейного интеграла	
	от пути интегрирования. 1 Формула Грина. Условия независимости	2
	криволинейного интеграла от пути интегрирования 2 .	

15.	Приложения криволинейных интегралов. Практические приложения криволинейного интеграла первого рода. 2.	2
16.	Поверхностные интегралы первого рода и их вычисление. 1. Определение поверхностного интеграла I-го рода. Основные свойства поверхностного интеграла I-го рода. Вычисление поверхностного интеграла I-го рода. Некоторые приложения поверхностного интеграла I-го рода 2.	2
17.	Поверхностные интегралы второго рода и их вычисление. 1. Определение поверхностного интеграла II-го рода Свойства поверхностного интеграла II-го рода. Вычисление поверхностного интеграла II-го рода. Сведение поверхностного интеграла II-го рода к вычислению двойных Некоторые приложения поверхностного интеграла II-го рода ² .	2
18.	Связь между поверхностными интегралами первого и второго рода. Связь между поверхностными интегралами первого и второго рода. 2	2
19.	Формула Остроградского. Формула Стокса. 1. Формула Остроградского-Гаусса. Формула Стокса.	2
	Итого	38 часов

Рассмотрено на заседании кафедры физики, математики и информатики «12» мая 2023 г., протокол №8

Заведующий кафедрой ФМИ

¹ - тема ² - сущностное содержание (при необходимости)