Тематический план занятий лекционного типа по дисциплине «Электричество и магнетизм» для обучающихся 2024 года поступления по образовательной программе 12.03.04. Биотехнические системы и технологии, направленность (профиль) Клиническая инженерия (бакалавриат), форма обучения очная

2024- 2025 учебный год.

$N_{\underline{0}}$	Темы занятий лекционного типа	Часы	
		(академ.)	
		,	
	2 семестр		
1.	Электростатика. Силовая характеристика электрического поля.	2	
	Электрическое взаимодействие. Понятие электрического заряда. Закон		
	Кулона. Теории дальнодействия и близкодействия. Электростатическое		
	поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии напряженности. ²		
2.	Теорема Гаусса для расчета электрических полей. Энергетическая	2	
۷.	характеристика электрического поля. ¹	2	
	Применение теоремы Гаусса для расчета случаев бесконечной нити,		
	цилиндра, шара. Работа в электростатическом поле. Потенциал.		
	Разность потенциалов. Эквипотенциальные поверхности. Связь между		
	напряженностью и потенциалом. ²		
3.	Вычисление потенциала по напряженности для некоторых	2	
	электростатических полей. ¹		
	Вычисление потенциала по напряженности для некоторых		
	электростатических полей: поле бесконечной заряженной плоскости,		
	поле бесконечной заряженной нити, поле заряженной сферы, поле		
	заряженного шара. Электрический диполь. Поле электрического диполя. Основы электрокардиографии. ²		
4.	Проводники в электростатическом поле. Диэлектрики в	2	
4.	электростатическом поле. Теорема Гаусса для вектора	2	
	электрического смещения.1		
	Проводники в электростатическом поле. Распределение зарядов в		
	проводниках. Электрическая емкость. Виды конденсаторов Соединение		
	конденсаторов. Энергия системы зарядов. Энергия конденсатора.		
	Энергия электрического поля. Диэлектрики. Поляризация диэлектриков.		
	Вектор поляризации. Напряженность внутри диэлектрика. Вектор		
	электрического смещения. Изотропные и анизотропные диэлектрики.		
	Диэлектрическая проницаемость и диэлектрическая восприимчивость.		
	Методы измерения диэлектрической проницаемости. Виды поляризации диэлектриков. Сегнетоэлектрики и пьезоэлектрики. ²		
5.	Постоянный ток. Законы Кирхгофа. Электрический ток в газах,	2	
J.	жидкостях и вакууме. ¹		
	Определение электрического тока. Постоянный ток. Характеристики		
	тока. Эффекты тока. Сопротивление проводника. Закон Ома. Методы		
	измерения электрического тока и сопротивления. Правила Кирхгофа.		

	Применение законов Кирхгофа для расчета электрических цепей.	
	Электрический ток в газах. Плазма. Электрический ток в электролитах.	
	Законы Фарадея. Природа электрического тока в металлах.	
	Классическая теория электронного газа. ²	
6.	Магнитное поле и его основные характеристики. Электромагнитная	2
	индукция. ¹	
	Закон магнитного взаимодействия (Закон Ампера). Вектор	
	напряженности магнитного поля. Закон Био-Савара-Лапласа.	
	Напряженность магнитного поля кругового и прямого токов. Явление	
	электромагнитной индукции. Правило Ленца. Магнитный поток. Закон	
	электромагнитной индукции. Самоиндукция. Индуктивность. Энергия	
	магнитного поля. Магнетики. Вектор намагничения. ²	
7.	Уравнения Максвелла. ¹	2
	Ток смещения. Система уравнений Максвелла в интегральной форме.	
	Уравнения Максвелла в дифференциальной форме. ²	
8.	Электромагнитные колебания. Импульсные токи. ¹	2
	Цепи переменного тока с резистором, конденсатором, катушкой	
	индуктивности. Импеданс. Работа и мощность переменного тока.	
	Импульсные токи. Линейные цепи. Прохождение прямоугольного	
	импульса через интегрирующие и дифференцирующие цепи. ²	
9.	Электромагнитные волны. Вектор Умова-Пойтинга. Импульс и	2
	масса электромагнитного поля. ¹	
	Электромагнитное поле. Волновое уравнение. Распространение	
	электромагнитных волн в веществе. Энергия электромагнитных волн.	
	Вектор Умова-Пойтинга. Лечебно-диагностическое оборудование. Цепи	
	с распределенными параметрами. 2	
	Итого	18

 $[\]frac{1}{1}$ — тема лекции

Рассмотрено на заседании кафедры физики, математики и информатики ВолгГМУ «17» июня 2024 г., протокол № 11

Заведующий кафедрой

Showarf

С.А. Шемякина

² – сущностное содержание лекции