Тематический план занятий лекционного типа по дисциплине «<u>Физика, математика</u>» для обучающихся 2024 года поступления по образовательной программе 31.05.01 <u>Лечебное дело,</u> профиль Лечебное дело, (специалитет) форма обучения <u>очная</u> 2024- 2025 учебный год

№	Темы занятий лекционного типа	Часы	
		(академ.)	
2 семестр			
1.	Механические волны. Акустика. Звук. Ультразвук ¹ Типы волн. Уравнение и график механической волны. Физические величины, описывающие механическую волну. Энергетические характеристики. Эффект Доплера. Дифракция и интерференция волн. Звук. Виды звуков. Спектр звука. Волновое сопротивление. Объективные (физические) характеристики звука. Субъективные характеристики звука, их связь с объективными характеристиками. Психофизический закон Вебера-Фехнера. Ультразвук, физические основы применения в медицине и в фармации ²	2	
2.	Гидродинамика. Гемодинамика Физические основы гемодинамики. Вязкость. Методы определения вязкости жидкостей. Стационарный поток, ламинарное и турбулентное течения. Формула Ньютона, ньютоновские и неньютоновские жидкости. Формула Пуазейля. Число Рейнольдса. Гидравлическое сопротивление в последовательных, параллельных и комбинированных системах трубок. Разветвляющиеся сосуды ²	2	
3.	Транспорт в мембранах. Биопотенциалы Биологические мембраны и их физические свойства. Виды пассивного транспорта. Уравнения простой диффузии и электродиффузии. Уравнение Нернста-Планка. Понятие о потенциале покоя биологической мембраны. Равновесный потенциал Нернста. Проницаемость мембран для ионов. Модель стационарного мембранного потенциала Гольдмана-Ходжкина-Каца. Понятие об активном транспорте ионов через биологические мембраны. Механизмы формирования	2	

	потенциала действия на мембранах нервных и мышечных клеток ²	
4.	Физические основы электрокардиографии. Электрическое поле. Электрический диполь. Поведение диполя в однородном электрическом поле. Дипольный электрический генератор (токовый диполь). Прямая и обратная задачи электрокардиографии. Теория Эйнтховена. ЭКГ в норме и патологии. ²	2
5.	Электромагнитные волны ¹ Электрическое и магнитное поле. Определение электромагнитной волны. Физические свойства электромагнитных волн. Уравнение и график электромагнитной волны. Вектор Умова-Пойнтинга. Шкала электромагнитных волн: неионизирующие и ионизирующие излучения. Шкала электромагнитных волн, принятая в медицине ²	2
6.	Поляризация света. Поглощение и рассеяние света Волновая оптика. Поляризация света. Способы получения поляризованного света. Поляризационная микроскопия. Оптическая активность. Поляриметрия. Взаимодействие света с веществом. Рассеяние света. Поглощение света. Закон Бугера-Ламберта-Бэра. Оптическая плотность. Фотоколориметрия.	2
7.	Радиоактивность. Дозиметрия 1. Закон радиоактивного распада. Взаимодействие α-, β- и γ-излучений с веществом. Радиолиз воды. Механизмы действия ионизирующих излучений на организм человека. Дозиметрия ионизирующего излучения. Поглощенная, экспозиционная и эквивалентная дозы. Радиационный фон. Защита от ионизирующего излучения 2	2
	Итого	14

Рассмотрено на заседании кафедры физики, математики и информатики ВолгГМУ «17» июня 2024 г., протокол № 11

Заведующий кафедрой

Showay

С.А. Шемякина