Оценочные средства для проведения аттестации по дисциплине «<u>Физика</u>»

для обучающихся 2025 года поступления

на подготовительном отделении иностранных слушателей по дополнительной образовательной программе

«Медико-биологический профиль» 2025- 2026 учебный год

1.1.Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, контрольные вопросы для собеседования, решение типовых физических задач.

кон	трольные вопр	осы для собес	седования, реш	ение ти	повых физиче	еских зада	1Ч.			
	1.1.1. Примеры тестовых заданий: Проверяемые компетенции: ОК-1, ОПК-1, ОПК-8									
№ 1	. В механике сп	ила обозначае	тся							
	1) R,	2) t,	3) a,	4) F.						
№2. В механике единицей измерения ускорения является										
	1) m/c,	2) M/c^2 ,	3) M^2/c ,		4) M^2 .					
№3. Формула, выражающая второй закон Ньютона										
	1) F=ma,	2) F=mg,	3),		4).					
№4. Сила притяжения яблока к Земле равна 2 Н. С какой по модулю силой яблоко притягивает к себе Землю?										
	1) 2 H,	2) -2 H,	3) 0 H,		4) 20 H.					
№5. Сила всемирного тяготения зависит										
1) от ускорения свободного падения, 2) только от массы тел,										
3) o	т массы тел и р	расстояния ме	жду ними,	4) or 0	среды, в котор	ую помец	цены тел	ıa.		
пря	. Утверждени молинейно, есмпенсировано:	сли на нее п				-	•	•		
	1) верно при	любых услов	иях, 2) вер	но для і	инерциальных	систем о	тсчета,			
	верно для неи нета.	нерциальных	систем отсче	ета,	4)неверно н	и для ка	ких сис	тем		
сил	. На левом рис , действующих гора ускорения	не тело. Како	ой из векторов	на прав	ом рисунке ук	-				

1) 1, 2) 2, 3) 3, 4) 4.

№8. Космонавт, находясь на Земле, притягивается к ней с силой 700 Н. С какой										
приблизительно силой он будет притягиваться к Марсу, находясь на его поверхности?										
Радиус Марса в 2 раза, а масса – в 10 раз меньше чем у Земли.										
1) 70 1	Н, 2) 140 Н,	3) 210 H,	4) 280 H.							
№9. Мальчик массой 50 кг совершает прыжок в высоту. Сила тяжести, действующая на										
него во время прыжка примерно равна										
1) 500	H, 2) 50 H,	3) 5 H,	4) 0 H.							

№10. Тело равномерно движется по плоскости. Сила давления тела на плоскость равна 20 H, сила трения 5 H. Коэффициент трения скольжения равен

- 1) 0,8, 2) 0,25, 3) 0,75, 4) 0,2.
- 1.1.2. Примеры контрольных заданий в форме типовых физических задач Проверяемые компетенции: ОК-1, ОПК-1, ОПК-8
 - 1. Для изобарного нагревания 800 моль газа на 500 К газу сообщили количество теплоты 9,4 МДж. Определить работу газа и приращение его внутренней энергии.
 - 2. Объем 160 г кислорода, температура которого 27 ⁰C, при изобарном нагревании увеличился вдвое. Найти работу газа при расширении и изменение внутренней энергии.
 - 3. В капиллярной трубке радиусом 0,5 мм жидкость поднялась на 11 мм. Найти плотность данной жидкости, если ее коэффициент поверхностного натяжения 22 мН/м.
 - 4. С лодки массой 200 K2 , движущейся со скоростью 1 $^{M/C}$, прыгает мальчик массой 50 K2 в горизонтальном направлении со скоростью 7 $^{M/C}$. Какова скорость лодки после прыжка мальчика, если: 1) мальчик прыгает с кормы в сторону, противоположную движению; 2) мальчик прыгает с носа по ходу движения?
 - 5. Вагон массой 20 mOHH , движущийся со скоростью 0,3 $^{M/c}$, нагоняет вагон массой 30 mOHH , движущийся со скоростью 0,2 $^{M/c}$. Какова скорость вагонов после взаимодействия, если удар неупругий?
 - 6. Под действием силы 100 Н проволока длиной 5 м и площадью поперечного сечения 2,5 мм² удлинилась на 1 мм. Определить напряжение, испытываемое проволокой, и модуль упругости.
 - 7. Найти среднюю кинетическую энергию молекулы одноатомного газа при давлении 20 $\kappa\Pi a$. Концентрация молекул этого газа при указанном давлении составляет $3\cdot 10^{25} \, \text{M}^{-3}$.
 - 8. Средняя плотность Венеры $\rho = 5200 \, \kappa z / M^3$, а радиус планеты $R = 6100 \kappa M$. Найти ускорение свободного падения на поверхности Венеры.
 - 9. Автомобиль массой 2 moнны проходит по выпуклому мосту, имеющему радиус кривизны 40 M , со скоростью 36 $^{\kappa M/4}$. С какой силой автомобиль давит на мост в его середине?

- 10. Какую работу совершил воздух массой 290 г при его изобарном нагревании на 20 К и какое количество теплоты ему при этом сообщили?
- 11. Радиус планеты Марс составляет 0,53 радиуса Земли, а масса 0,11 массы Земли. Зная ускорение свободного падения на Земле, найти ускорение свободного падения на Марс.

1.1.3. Примеры контрольных вопросов для собеседования

Проверяемые компетенции: ОК-1, ОПК-1, ОПК-8

- 1. Масса тела. Сила. Законы Ньютона.
- 2. Сила притяжения двух тел (закон всемирного тяготения), сила тяжести (притяжение тела к земле).
- 3. Вес тела, сила реакции опоры. Сила упругости (закон Гука).
- 4. Сила трения. Сила Архимеда.
- 5. Импульс. Закон сохранения импульса. Упругий и неупругий удар.
- 6. Работа. Кинетическая энергия. Мощность.
- 7. Работа. Потенциальная энергия взаимодействия тела и Земли. Мощность.
- 8. Потенциальная энергия упруго деформированного тела. Закон сохранения энергии. Мощность.
- 9. Основные положения молекулярно-кинетической теории (МКТ). Количество вещества. Молярная масса. Масса одной молекулы.
- 10. Агрегатные состояния. Газы. Строение газов. Основное уравнение молекулярно-кинетической теории идеального газа.
- 11. Температура. Уравнение состояния идеального газа. Изопроцессы.
- 12. Жидкости. Строение жидкостей. Поверхностное натяжение. Смачивание и несмачивание. Капиллярные явления.
- 13. Твёрдые тела. Строение твёрдых тел. Деформация и напряжение.
- 14. Твёрдые тела. Строение твёрдых тел. Закон упругой деформации и его сравнение с законом Гука.

1.2. Оценочные средства для проведения промежуточной аттестации по дисциплине

Промежуточная аттестация проводится в форме экзамена

Промежуточная аттестация включает следующие типы заданий: два вопроса и одну типовую задачу по физике. Обучающийся письменно готовит ответы на вопросы, оформляет решение задачи по требованиям, предъявляемым к решению задач по физике. Промежуточная аттестация может быть организована по усмотрению преподавателя физики в письменной или в устной форме.

1.2.1. Примеры экзаменационных вопросов:

Проверяемые компетенции: ОК-1, ОПК-1, ОПК-8

- 1. Наука физика. Физические тела, явления, величины. Международная система единиц измерения физических величин (СИ).
- 2. Кинематика: равномерное прямолинейное движение, равноускоренное прямолинейное движение, равномерное движение по окружности.
- 3. Динамика. Масса тела. Сила.
- 4. Законы Ньютона.
- 5. Закон всемирного тяготения. Сила тяжести. Сила реакции опоры.
- 6. Сила упругости. Сила трения. Сила Архимеда.
- 7. Импульс. Закон сохранения импульса.

- 8. Работа и мощность.
- 9. Кинетическая и потенциальная энергия.
- 10. Закон сохранения и превращения энергии. Привести пример.
- 11. Основные положения молекулярно-кинетической теории. Строение газов. Основное уравнение молекулярно-кинетической теории идеального газа.
- 12. Температура. Уравнение состояния идеального газа.
- 13. Твердые тела. Строение твердых тел. Виды деформации. Закон упругой деформации.
- 14. Термодинамика. Основные понятия. Виды теплопередач.
- 15. Первый и второй законы термодинамики.
- 16. Электрический заряд. Закон Кулона.
- 17. Электрическое поле. Напряженность. Потенциал. Напряжение.
- 18. Диэлектрики. Конденсаторы.
- 19. Проводники. Закон Ома для участка цепи. Параллельное и последовательное соединение проводников.
- 20. Закон Ома для замкнутой цепи. Работа и мощность электрического тока.
- 21. Магнитное поле. Магнитная индукция.
- 22. Сила Ампера. Сила Лоренца.
- 23. Электромагнитная индукция. Основной закон электромагнитной индукции и его частные случаи.
- 24. Механические колебания. Классификация колебаний.
- 25. Свободные гармонические колебания. Уравнения и графики для смещения, скорости и ускорения.
- 26. Энергия колебательного движения.
- 27. Механические волны; продольные и поперечные волны. Звук.
- 28. Колебательный контур. Свободные электромагнитные колебания: уравнения для заряда, напряжения, силы тока и эдс самоиндукции.
- 29. Электромагнитные волны. Шкала электромагнитных волн.
- 30. Оптика. Законы отражение и преломления света.
- 31. Предельный угол преломления. Полное внутреннее отражение.
- 32. Дисперсия, интерференция и дифракция света.

1.2.2. Пример(ы) ситуационной (ых) задач(и)

Проверяемые компетенции: ОК-1, ОПК-1, ОПК-8

- 1. Электрическую лампу сопротивлением 240 Ом, рассчитанную на напряжение 120 В, надо питать от сети с напряжением 220 В. Какой длины нихромовый проводник сечением 0,55 мм2 надо включить последовательно с лампочкой?
- 2. При подключении лампочки к батарее элементов с ЭДС 4,5 В вольтметр показал напряжение на лампочке 4 В, а амперметр силу тока 0,25 А. Каково внутренне сопротивление батареи?
- 3. К источнику с ЭДС 12 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 5 Ом. Найти силу тока в цепи и напряжение.

- 4. Заряды 10 и 16 нКл расположены на расстоянии 7 мм друг от друга. Какая сила будет действовать на заряд 2 нКл, помещённый в точку, удалённую на 3 мм от меньшего заряда и на 4мм от большего?
- 5. На заряд 1нКл , движущийся со скоростью 1 м/с , в магнитном поле действует сила 10 Н . Заряд движется под углом 300 к направлению индукции магнитного поля. Чему равна индукция этого поля?
- 6. За 5 мс в соленоиде, содержащем 500 витков провода, магнитный поток равномерно убывает с 7 до 9 мВб . Найти ЭДС индукции в соленоиде.
- 7. Колебательный контур состоит из конденсатора ёмкостью 400 пФ и катушки индуктивности 10 мГн. Найти амплитуду силы тока, если амплитуда напряжения 500 В.
- 8. В катушке с индуктивностью 0,6 Гн сила тока равна 20 А . Какова энергия магнитного поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое.

Рассмотрено на заседании кафедры физики, математики и информатики ВолгГМУ «30» мая 2025 г., протокол № 19

Заведующий кафедрой

Sheway

С.А. Шемякина