Оценочные средства для проведения аттестации по дисциплине «Химия» для обучающихся 2025 года поступления по образовательной программе 12.03.04 Биотехнические системы и технологии, направленность (профиль) Клиническая инженерия (бакалавриат), форма обучения очная 2025- 2026 учебный год.

1. Оценочные средства для проведения текущей аттестации по дисциплине

1.1. Оценочные средства для проведения аттестации на занятиях семинарского типа

Аттестация на занятиях семинарского типа включает следующие типы заданий: тестирование, решение ситуационных задач, контрольная работа, собеседование по контрольным вопросам, оценка освоения практических навыков (умений), написание и защита реферата, собеседование по контрольным вопросам, подготовка.

1.1.1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-3.1.1.

- 1. Химическая связь, образующаяся в результате перекрывания электронных орбиталей вдоль линии связи называется ...
 - а) сигма связь
 - б) металлическая
 - в) тройная
 - г) ковалентная
- 2. Процесс выравнивания орбиталей по форме и энергии называется...
 - а) гибридизация
 - б) изомерия
 - в) гомология
 - г) валентность
- 3. Вид изомерии органических молекул...
 - а) структурная
 - б) циклическая
 - в) органическая
 - г) алифатическая
- 4. Структура белка, являющаяся последовательностью α-аминокислот в полипептидной цепи, называется...
 - а) первичная
 - б) насыщенная
 - в) ненасышенная
 - г) ароматическая
- 5. Белки, выполняющие каталитическую функцию, это ...
 - а) ферменты
 - б) углеводы

- в) витамины
- г) липиды
- 6. Аминокислотами называют вещества, которые содержат...
 - а) аминогруппу и карбоксильную группу
 - б) только аминогруппу
 - в) только карбоксильную группу
 - г) гидроксильную группу
- 7. По своему химическому строению глюкоза является...
 - а) альдегидоспиртом
 - б) алканом
 - в) кислотой
 - г) аминокислотой
- 8. Основная функция глюкозы в клетках животных и человека...
 - а) источник энергии
 - б) передача наследственной информации
 - в) гормональная функция
 - г) защитная функция
- 9. Укажите основные элементы, входящие в состав углеводов:
 - а) углерод, кислород, водород
 - б) углевод, азот
 - в) углевод, кислород, азот
 - г) кислород, азот
- 10. ДНК выполняет функцию...
 - а) хранит генетическую информацию
 - б) является матрицей в синтезе белка
 - в) переносит нуклеиновые кислоты
 - г) запас питательных веществ
- 1.1.2. Примеры ситуационных задач

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1; ОПК-3.1.1; ОПК-3.2.1.

1. Женщина, «соблюдая фигуру», съела вне плана в составе торта 180 г глюкозы. Сколько времени она должна стирать белье (расход энергии 543 кДж/ч), чтобы полностью компенсировать излишества? Считать, что глюкоза полностью окисляется в организме по уравнению:

```
C_6H_{12}O_6 крист. + 6 O_2 газ = 6 CO_2 газ + 6 H_2O жидкость \Delta H^\circобр (C_6H_{12}O_6 крист. ) = - 1273 кДж/моль; \Delta H^\circобр (CO_2 газ) = - 394 кДж/моль; \Delta H^\circобр. (H_2O жилкость) = - 286 кДж/моль.
```

- 1) На основании какого закона проводятся термохимические расчеты?
- 2) Является ли процесс окисления глюкозы экзотермическим?
- 3) Является ли процесс окисления глюкозы эндотермическим?
- 4) Чему равна стандартная энтальпия окисления глюкозы?
- 5) Какое время пациентка должна затратить на стирку белья, чтобы компенсировать излишества?

2. У пациента обнаружен в крови спирт C_2H_5OH . Мог ли он образоваться в организме из CO_2 и H_2O , как утверждает пациент, если

 ΔG° обр. $(C_2H_5OH) = -278 \ кДж/моль;$ ΔG° обр. $(H_2O) = -286 \ кДж/моль;$ ΔG° обр. $(CO_2) = -394 \ кДж/моль.$

- 1)Напишите уравнение образования С₂H₅OH из СО₂ и H₂O;
- 2)Напишите уравнение Гиббса;
- 3) Что называется стандартной энергией Гиббса образования вещества?
- 4)По какой формуле рассчитывают ΔG° реакции?
- 5) Происходит ли в организме самопроизвольное образование C_2H_5OH из CO_2 и H_2O ?

1.1.3. Примеры вариантов контрольной работы

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1; ОПК-3.1.1; ОПК-3.2.1

Вариант №1.

- 1. Зависимость скорости реакции от природы реагирующих веществ. Закон действующих масс. Зависимость скорости реакции от концентрации реагирующих веществ.
- 2. Понятие о химической связи и механизме ее образования. Ковалентная связь и ее свойства: энергия, длина, насыщаемость, направленность, полярность.
- 3. При сжигании 4,2г железа с серой выделилось 1,74ккал. Рассчитайте энтальпию образования сульфида железа FeS.
- 4. Определить [H $^+$] и рН 1 10 $^{-2}$ М растворе азотистой кислоты. $K_{\text{дис.}}$ $HNO_2 = 5,1 \cdot 10^{-4}$.

1.1.4. Примеры контрольных вопросов для собеседования

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1

Вопросы к итоговой работе №1

- 1. Титриметрический методы анализа, его сущность и методы. Требования, предъявляемые к реакциям, используемым в объемном анализе.
- 2. Кислотно-основное титрование. Фиксирование точки эквивалентности; кислотно-основные индикаторы.
- 3. Кривые титрования, применение кислотно-основного титрования на практике.
- 4. Комплексонометрическое титрование. Титранты метода. Условия комплексонометрического титрования. Способы комплексонометрического титрования.
- 5. Устойчивость комплексонатов металлов в водных растворах. Индикаторы комплексонометрического титрования. Кривые комплексонометрического титрования. Применение комплексонометрического титрования.
- 6. Химическая термодинамика. Основные понятия и определения термодинамики: система, состояние, параметры и функции состояния.
- 7. Первое начало термодинамики. Внутренняя энергия, теплота, работа. Энтальпия образования вещества. Стандартное состояние элемента и вещества.
- 8. Закон Гесса. Следствия из закона Гесса. Энтальпия химической реакции.
- 9. Второе начало термодинамики. Критерий самопроизвольности процессов в изолированных системах. Энтропия химической реакции.
- 10. Макро- и микросостояния системы. Энтропия. Уравнение Больцмана. Постулат Планка.

- 11. Энтропия вещества. Зависимость энтропии вещества от температуры, объема, агрегатного состояния. Энтропия образования вещества.
- 12. Энергия Гиббса. Объединенное уравнение первого и второго законов термодинамики. Критерий самопроизвольности процессов в закрытых системах.
- 13. Обратимые и необратимые химические реакции. Химическое равновесие. Термодинамические условия химического равновесия. Константа равновесия химической реакции, способы ее выражения. Химический потенциал.
- 14. Смещение химического равновесия при изменении внешних условий: концентрации, давления, температуры. Принцип Ле Шателье. Уравнение изотермы Вант-Гоффа.
- 15. Химическая кинетика: основные понятия, предмет изучения. Скорость химической реакции. Средняя и мгновенная скорость химической реакции. Кинетические кривые.
- 16. Зависимость скорости реакции от природы реагирующих веществ. Закон действующих масс. Зависимость скорости реакции от концентрации реагирующих веществ.
- 17. Зависимость скорости реакции от давления и температуры. Уравнение Вант-Гоффа.
- 18. Молекулярность и порядок реакции. Моно-, би-, тримолекулярные реакции. Кинетические уравнения реакций нулевого и первого порядка.
- 19. Энергия активации. Теория активных соударений Аррениуса. Расчет энергии активации.
- 20. Сложные химические реакции: последовательные, параллельные, сопряженные и цепные реакции.
- 21. Фотохимические реакции, их роль в жизнедеятельности организма. Катализ. Гомогенный и гетерогенный катализ.
- 22. Основные положения квантовой механики. Понятие о волновой функции, электронном облаке и атомной орбитале. Уравнения Де-Бройля, Шредингера и принцип неопределенности Гейзенберга. Квантово-механическая модель атома.
- 23. Характеристики энергетического состояния электрона в системе квантовых чисел. Принцип Паули, принцип минимума энергии и правило Гунда. Их использование для объяснения последовательности заполнения электронных оболочек атома.
- 24. Понятие о химической связи и механизме ее образования. Ковалентная связь и ее свойства: энергия, длина, насыщаемость, направленность, полярность.
- 25. Метод валентных связей. Валентность атома и его координационно-насыщенное, валентно-насыщенное и валентно-ненасыщенное состояние.
- 26. Дипольный момент связи и ее поляризуемость. Ионная связь.
- 27. Понятие о гибридизации атомных орбиталей и виды гибридных состояний атома: sp^3 , sp^2 , sp, sp^3d^2 , sp^2d .
- 28. Водородная связь, механизм образования и ее роль в процессах ассоциации.
- 29. Ионное произведение воды и водородный показатель (рН). Реакция среды в растворах слабых кислот и оснований. Понятие об активной, потенциальной и общей кислотности.
- 30. Буферные системы, их классификация и механизм действия. Основное уравнение теории буферного действия: уравнение Гендерсона Гассельбаха. Буферная емкость и ее определение. Буферные системы и регуляции кислотно-основного равновесия в организме.

- 31. Основные положения теории электролитической диссоциации. Теория сильных электролитов. Равновесие в растворах слабых электролитов. Константа диссоциации. Расчет ионной силы растворов электролитов, коэффициента активности и активной концентрации ионов.
- 32. Коллигативные свойства растворов. Давление насыщенного пара растворителя над раствором (закон Рауля), температура кристаллизации и температура кипения раствора, осмос и осмотическое давление. Роль осмоса и осмотического давления в биологических системах.
- 33. Понятия о гетерогенных равновесных системах. Константа растворимости. Условия образования и растворения осадков. Гетерогенные процессы в живом организме.
- 1.2. Оценочные средства для самостоятельной работы обучающихся

Оценка самостоятельной работы включает в себя тестирование.

1.2.1. Примеры тестовых заданий с одиночным ответом

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1

- 01. Коллигативные свойства растворов это:
 - 1) свойства, которые не зависят от природы растворенного вещества, а зависят только от количества частиц
 - 2) свойства, которые зависят от природы растворителя и растворенного вещества
 - 3) свойства, которые зависят от температуры
 - 4) свойства, которые не зависят от количества частиц
- 02. Повышение температуры кипения ΔT_{κ} разбавленных растворов неэлектролитов прямо пропорционально:
 - 1) молярной концентрации раствора
 - 2) мольной доле растворителя
 - 3) нормальной концентрации раствора
 - 4) моляльной концентрации раствора
- 03. Относительное понижение давления насыщенного пара растворителя над раствором нелетучего электролита равно:
 - 1) молярной концентрации раствора
 - 2) мольной доле растворителя
 - 3) нормальной концентрации раствора
 - 4) мольной доле растворенного вещества
- 04. Физиологический раствор:
 - 1) раствор хлорида калия 5%
 - 2) раствор хлорида натрия 10%
 - 3) раствор хлорида натрия 0,9%
 - 4) раствор хлорида кальция 1%
- 05. Осмотическое давление 0,75м раствора глюкозы $C_6H_{12}O_6$ при 25°C равно:
 - 1) 3,0 мПа
 - 2) 1,86 мПа
 - 3) 2,5 m∏a
 - 4) 1,26 mΠa
- 06. При какой температуре 1л раствора неэлектролита с молярной концентрацией 0,25М осмотическое давление будет равно 245кПа:
 - 1) 129K
 - 2) 117,9K
 - 3) 139,7K

- 4) 110.5K
- 07. Раствор, в 100мл которого находится 3г вещества, обладает при 298К осмотическим давлением, равным 620,5 кПа. Определить молярную массу вещества.
 - 1) 185г/моль
 - 2) 119,7г/моль
 - 3) 104,8г/моль
 - 4) 156,3г/моль
- 08. Температура кипения воды повысится на____градусов, если в 100г воды растворить 9г глюкозы $C_6H_{12}O_6$ (E = 0,516).
 - 1) 0,86K
 - 2) 0,258K
 - 3) 0,19K
 - 4) 0,44K
- 1.2.2. Примеры тестовых заданий с множественным выбором и/или на сопоставление и/или на установление последовательности

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1

- 01. Истинным раствором называется
 - 1) гомогенная равновесная система переменного состава, образованная из двух или более компонентов;
 - 2) гомогенная система, состоящая не менее чем из 2-х веществ;
 - 3) гетерогенная система, содержащая не менее двух компонентов;
 - 4) однородная система, состоящая из молекул растворителя и частиц растворенного вещества, между которыми имеют место физикохимические взаимодействия;
 - 5) разнородная система, состоящая из двух и более компонентов и продуктов их взаимодействия.
- 02. Растворитель это
 - 1) среда, в которой растворенные вещества равномерно распределены в виде молекул и ионов;
 - 2) компонент раствора, находящийся в избытке и в том же агрегатном состоянии, что и сам раствор;
 - 3) компонент раствора, находящийся в недостатке и в том же агрегатном состоянии, что и сам раствор.
- 03. По относительным количествам растворителя и растворенного вещества различают растворы
 - 1) насыщенные;
 - 2) разбавленные;
 - 3) ненасыщенные;
 - 4) пересыщенные;
 - 5) концентрированные.
- 04. Растворимость зависит
 - 1) от природы растворителя и растворяемого вещества;
 - 2) от концентрации;
 - 3) от температуры;
 - 4) от времени;
 - 5) от присутствия в растворе других веществ.

- 05. Вода уникальный растворитель, что объясняется следующими её особенностями
 - 1) высокой вязкостью;
 - 2) высоким дипольным моментом;
 - 3) высокой диэлектрической проницаемостью;
 - 4) низкой теплоёмкостью;
 - 5) низкой теплотой испарения.
- 06. Процесс сольватации молекул и ионов сопровождается
 - 1) выделением тепла;
 - 2) поглощением тепла;
 - 3) постоянством внутренней энергии системы;
 - 4) возрастанием внутренней энергии системы.
- 07. Изменение давление не влияет на растворимость в воде
 - 1) газов;
 - 2) жидкостей;
 - 3) твердых веществ.
- 08. Способы выражения состава растворов
 - 1) молярная концентрация;
 - 2) моляльность;
 - 3) фактор эквивалентности;
 - 4) массовая доля;
 - 5) растворимость.

2. Оценочные средства для проведения промежуточной аттестации по дисциплине

Промежуточная аттестация проводится в форме зачета с оценкой.

Перечень вопросов для подготовки к промежуточной аттестации:

$N_{\underline{0}}$	Вопросы для подготовки к промежуточной	Проверяемые
	аттестации	индикаторы
		достижения
		компетенций
1.	Титриметрический методы анализа, его сущность и методы.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
2.	Требования, предъявляемые к реакциям, используемым в объемном анализе.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
3.	Кислотно-основное титрование	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
4.	Фиксирование точки эквивалентности; кислотно-основные индикаторы.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
5.	Кривые титрования, применение кислотно-основного титрования на практике	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
6.	Комплексонометрическое титрование. Титранты метода.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
7.	Условия комплексонометрического титрования. Способы комплексонометрического титрования.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
8.	Кривые комплексонометрического титрования. Применение комплексонометрического титрования	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
9.	Химическая термодинамика. Основные понятия и определения термодинамики: система, состояние, параметры и функции состояния.	ОПК-1.1.1; ОПК-1.2.1
10.	Первое начало термодинамики. Внутренняя энергия,	ОПК-1.1.1; ОПК-1.2.1

	теплота, работа.	
11.	Энтальпия образования вещества. Стандартное состояние	ОПК-1.1.1; ОПК-1.2.1
	элемента и вещества.	ОПК-3.1.1; ОПК-3.2.1
12.	Закон Гесса. Следствия из закона Гесса.	ОПК-1.1.1; ОПК-1.2.1
13.	Второе начало термодинамики. Критерий	ОПК-1.1.1; ОПК-1.2.1
	самопроизвольности процессов в изолированных	
	системах.	
14.	Энтропия химической реакции. Макро- и микросостояния	ОПК-1.1.1; ОПК-1.2.1
	системы.	
15.	Уравнение Больцмана. Постулат Планка.	ОПК-1.1.1; ОПК-1.2.1
16.	Энергия Гиббса. Объединенное уравнение первого и	ОПК-1.1.1; ОПК-1.2.1
	второго законов термодинамики.	
17.	Критерий самопроизвольности процессов в закрытых	ОПК-1.1.1; ОПК-1.2.1
	системах.	ОПК-3.1.1; ОПК-3.2.1
18.	Обратимые и необратимые химические реакции.	ОПК-1.1.1; ОПК-1.2.1
	Химическое равновесие. Термодинамические условия	ОПК-3.1.1; ОПК-3.2.1
10	химического равновесия.	OHK 1.1.1 OHK 1.2.1
19.	Константа равновесия химической реакции, способы ее	ОПК-1.1.1; ОПК-1.2.1
20	выражения. Химический потенциал.	ОПИ 1 1 1, ОПИ 1 2 1
20.	Смещение химического равновесия при изменении	ОПК-1.1.1; ОПК-1.2.1
21	внешних условий: концентрации, давления, температуры.	ОПК-1.1.1; ОПК-1.2.1
21.	Принцип Ле Шателье. Уравнение изотермы Вант-Гоффа.	-
22.	Химическая кинетика: основные понятия, предмет	ОПК-1.1.1; ОПК-1.2.1
22	изучения.	ОПК-1.1.1; ОПК-1.2.1
23.	Скорость химической реакции. Средняя и мгновенная	OHK-1.1.1, OHK-1.2.1
24	скорость химической реакции.	ОПК-1.1.1; ОПК-1.2.1
24.	Зависимость скорости реакции от природы реагирующих веществ. Закон действующих масс.	OHK-1.1.1, OHK-1.2.1
25.	Зависимость скорости реакции от концентрации	ОПК-1.1.1; ОПК-1.2.1
23.	реагирующих веществ.	OTHC 1.1.1, OTHC 1.2.1
26.	Зависимость скорости реакции от давления и температуры.	ОПК-1.1.1; ОПК-1.2.1
20.	Уравнение Вант-Гоффа.	ome, ome .
27.	Энергия активации. Теория активных соударений	ОПК-1.1.1; ОПК-1.2.1
	Аррениуса. Расчет энергии активации.	,
28.	Сложные химические реакции: последовательные,	ОПК-1.1.1; ОПК-1.2.1
	параллельные, сопряженные и цепные реакции.	
29.	Фотохимические реакции, их роль в жизнедеятельности	ОПК-1.1.1; ОПК-1.2.1
	организма.	
30.	Катализ. Гомогенный и гетерогенный катализ.	ОПК-1.1.1; ОПК-1.2.1
31.	Основные положения квантовой механики. Понятие о	ОПК-1.1.1; ОПК-1.2.1
	волновой функции, электронном облаке и атомной	
	орбитале	
32.	Уравнения Де-Бройля, Шредингера и принцип	ОПК-1.1.1; ОПК-1.2.1
	неопределенности Гейзенберга	
33.	Характеристики энергетического состояния электрона в	ОПК-1.1.1; ОПК-1.2.1
	системе квантовых чисел.	OFFICIAL OFFICE
34.	Принцип Паули, принцип минимума энергии и правило	ОПК-1.1.1; ОПК-1.2.1
2.5	Гунда.	OHK 1.1.1 OHK 1.2.1
35.	Понятие о химической связи и механизме ее образования.	ОПК-1.1.1; ОПК-1.2.1
26	Ковалентная связь.	ОПИ 1.1. ОПИ 1.2.1
36.	Свойства ковалентной связи: энергия, длина,	ОПК-1.1.1; ОПК-1.2.1
27	насыщаемость, направленность, полярность.	OUN 1 1 1 OUN 1 2 1
37.	Метод валентных связей. Валентность атома и его	ОПК-1.1.1; ОПК-1.2.1
	координационно-насыщенное, валентно-насыщенное и	
	валентно-ненасыщенное состояние.	

38.	Дипольный момент связи и ее поляризуемость. Ионная связь.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
39.	Водородная связь, механизм образования и ее роль в процессах ассоциации.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
40.	Ионное произведение воды и водородный показатель (рН).	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
41.	Реакция среды в растворах слабых кислот и оснований.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
42.	Понятие об активной, потенциальной и общей кислотности.	ОПК-1.1.1; ОПК-1.2.1
43.	Буферные системы, их классификация и механизм действия.	ОПК-1.1.1; ОПК-1.2.1
44.	Основное уравнение теории буферного действия: уравнение Гендерсона – Гассельбаха.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
45.	Буферная емкость и ее определение.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
46.	Буферные системы и регуляции кислотно-основного равновесия в организме.	ОПК-1.1.1; ОПК-1.2.1
47.	Основные положения теории электролитической диссоциации.	ОПК-1.1.1; ОПК-1.2.1
48.	Теория сильных электролитов. Расчет ионной силы растворов электролитов, коэффициента активности и активной концентрации ионов.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
49.	Равновесие в растворах слабых электролитов. Константа диссоциации.	ОПК-1.1.1; ОПК-1.2.1
50.	Коллигативные свойства растворов. Давление насыщенного пара растворителя над раствором (закон Рауля),	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
51.	Коллигативные свойства растворов. Температура кристаллизации и температура кипения раствора.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
52.	Коллигативные свойства растворов. Осмос и осмотическое давление.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
53.	Роль осмоса и осмотического давления в биологических системах.	ОПК-1.1.1; ОПК-1.2.1
54.	Понятия о гетерогенных равновесных системах. Константа растворимости.	ОПК-1.1.1; ОПК-1.2.1
55.	Условия образования и растворения осадков. Гетерогенные процессы в живом организме.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
56.	Изучение химических показателей природной родниковой воды в источниках Волгоградской области.	ОПК-1.1.1; ОПК-1.2.1 ОПК-3.1.1; ОПК-3.2.1
57.	Электродные потенциалы и механизм их возникновения. Уравнение Нернста. Обратимые электроды 1- и 2-го рода.	ОПК-1.1.1; ОПК-1.2.1
58.	Редокс-электроды. Уравнение Петерса. Диффузионный, мембранный потенциал и их роль в генерации биопотенциалов.	ОПК-1.1.1; ОПК-1.2.1
59.	Понятие процесса коррозии. Классификация видов коррозии.	ОПК-1.1.1; ОПК-1.2.1
60.	Сущность химической коррозии и электрохимической коррозии.	ОПК-1.1.1; ОПК-1.2.1
61.	Способы защиты от коррозии.	ОПК-1.1.1; ОПК-1.2.1
62.	Электронные эффекты в молекулах: виды и механизм передачи.	ОПК-1.1.1; ОПК-1.2.1
63.	Кислотность и основность органических соединений. Типы кислот Бренстеда (СН; NH; SH; ОН-кислоты). Основания Бренстеда.	ОПК-1.1.1; ОПК-1.2.1
64.	Аминокислоты. Строение, изомерия, номенклатура. Особенности строения природных аминокислот.	ОПК-1.1.1, ОПК-1.2.1, ОПК-1.2.2, ОПК-1.3.1,

	Изоэлектрическая точка.	ОПК-1.3.2, ОПК-1.3.3
65.	Химические свойства аминокислот.	ОПК-1.1.1; ОПК-1.2.1
66.	Качественные реакции на аминокислоты, пептиды, белки	ОПК-1.1.1; ОПК-1.2.1
	(цветные реакции).	ОПК-3.1.1; ОПК-3.2.1
67.	Образование и строение пептидов. Понятие о первичной	ОПК-1.1.1; ОПК-1.2.1
	структуре белка.	
68.	Вторичная и третичная структура белков.	ОПК-1.1.1; ОПК-1.2.1
69.	Углеводы. Классификация и биологическая роль	ОПК-1.1.1; ОПК-1.2.1
	углеводов (с примерами).	
70.	Моносахариды. Строение. Стереоизомерия и таутомерия	ОПК-1.1.1; ОПК-1.2.1
	моносахаридов.	
71.	Моносахариды. Классификация и химические свойства.	ОПК-1.1.1; ОПК-1.2.1
72.	Олигосахариды. Строение дисахаридов: мальтозы,	ОПК-1.1.1; ОПК-1.2.1
	лактозы, сахарозы.	
73.	Восстанавливающие и невосстанавливающие дисахариды:	ОПК-1.1.1; ОПК-1.2.1
	химические свойства, биологическая роль.	
74.	Полисахариды. Крахмал, целлюлоза, гликоген. Строение и	ОПК-1.1.1; ОПК-1.2.1
	биологическая роль.	OFFICE LEE OFFICE LOCAL
75.	Нуклеотиды. Строение нуклеозидов: моно-, ди-,	ОПК-1.1.1; ОПК-1.2.1
	трифосфатов. Характер связи нуклеофильного основания с	
7.0	углеводным остатком.	ОПК-1.1.1; ОПК-1.2.1
76.	Гидролиз нуклеотидов. Нуклеотидный состав ДНК и РНК. Первичная структура ДНК и РНК. Биологическая роль.	OHK-1.1.1, OHK-1.2.1
77.		ОПК-1.1.1; ОПК-1.2.1
//.	Дисперсные системы, классификация. Природа коллоидного состояния. Получение и очистка коллоидов.	OHK-1.1.1, OHK-1.2.1
78.	Молекулярно-кинетические свойства коллоидных	ОПК-1.1.1; ОПК-1.2.1
76.	растворов (диффузия, броуновское движение, осмос).	OHK-1.1.1, OHK-1.2.1
79.	Оптические свойства (рассеяние света, цвет,	ОПК-1.1.1; ОПК-1.2.1
17.	ультрамикроскопия).	OTIK 1.1.1, OTIK 1.2.1
80.	Дисперсные системы. Строение двойного электрического	ОПК-1.1.1; ОПК-1.2.1
00.	слоя. Мицелла, гранула, ядро.	ome 1.1.1, ome 1.2.1
81.	Коагуляция и определение её порога. Медленная и	ОПК-1.1.1; ОПК-1.2.1
01.	быстрая коагуляция. Правило Шульце – Гарди.	, , , , , , , , , , , , , , , , , , , ,
82.	Теория коагуляции ДЛФО. Коагуляция смесями	ОПК-1.1.1; ОПК-1.2.1
	электролитов и взаимная коагуляция.	
83.	Коллоидная защита. Пептизация.	ОПК-1.1.1; ОПК-1.2.1

Промежуточная аттестация включает следующие типы заданий: оценка освоения практических навыков (умений)

2.1. Примеры заданий по оценке промежуточной аттестации (зачет с оценкой)

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1; ОПК-1.2.1; ОПК-3.1.1; ОПК-3.2.1.

- **1.** Обратимые и необратимые химические реакции. Химическое равновесие. Термодинамические условия химического равновесия. Константа равновесия химической реакции, способы ее выражения. Химический потенциал.
- 2. Полисахариды. Крахмал, целлюлоза, гликоген. Строение и биологическая роль.
- **3.** На нейтрализацию 31 см 3 0,16 н. раствора щелочи требуется 217 см 3 раствора H_2SO_4 . Чему равны нормальность и титр раствора H_2SO_4 ?

В полном объеме фонд оценочных средств по дисциплине доступен в ЭИОС ВолгГМУ по ссылке(ам):

https://elearning.volgmed.ru/course/view.php?id=10861

Рассмотрено на заседании кафедры химии, протокол от 30.05.2025 г. № 10.

Заведующий кафедрой химии,

д.х.н.,профессор

А.К. Брель